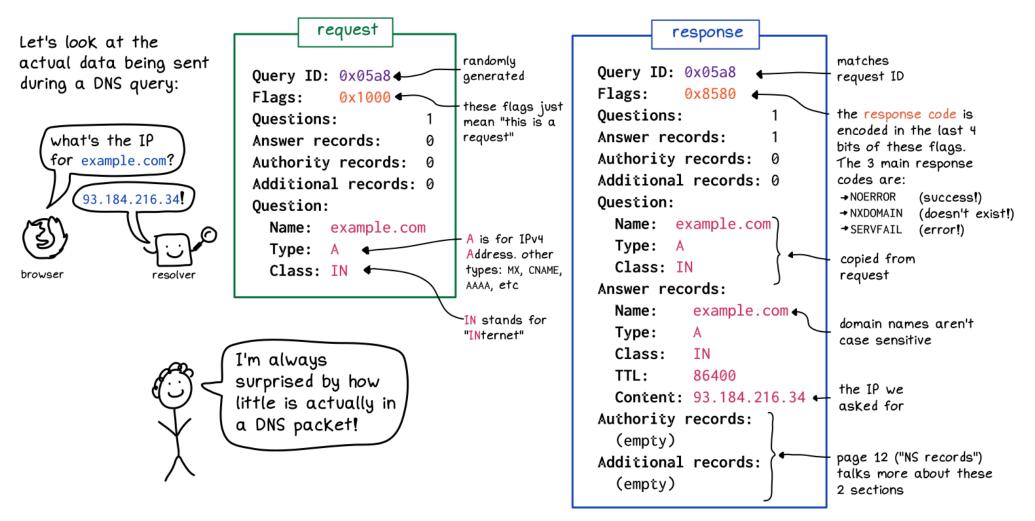
CS 43: Computer Networks


DNS and Email October 01, 2024

Reading Quiz

@bork everything inside a DNS packet

I literally mean everything, I copied this verbatim from a real DNS request using Wireshark. (DNS packets are binary but we're showing a human-readable representation here)

https://wizardzines.com/comics/dns-packet/

Where we are

Application: the application (e.g., HTTP, DNS)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Today

- Identifiers and addressing
- Domain Name System
 - Telephone directory of the Internet
 - Protocol format
 - Caching: Load balancing
 - Security Challenges

Goals of DNS

A wide-area distributed database

Possibly biggest such database in the world!

Goals

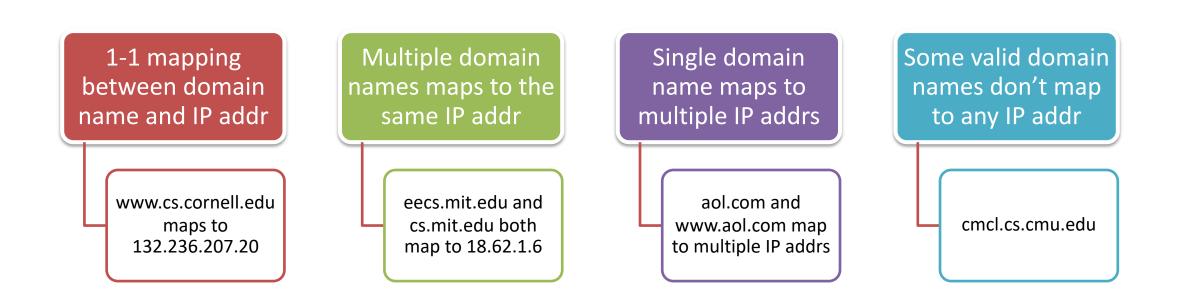
- Scalability; decentralized maintenance
- Robustness
- Global scope
- Names mean the same thing everywhere
- Distributed updates/queries
- Good performance

DNS: Application Layer Protocol

- distributed database
 - implemented in hierarchy of many name servers.
- application-layer protocol:
 - hosts communicate to name servers
 - resolve names \rightarrow addresses
- Core Internet function, implemented as application-layer protocol

Uses of DNS

Hostname to IP address translation


• Reverse lookup: IP address to hostname translation

Host name aliasing: other DNS names for a host

 Alias hostnames point to canonical hostname

Email: look up domain's mail server by domain name

Different DNS Mappings

DNS Services

- DNS is an application-layer protocol. E2E design!
- It provides:
 - Hostname to IP address translation
 - Host aliasing (canonical and alias names)
 - Mail server aliasing
 - Load distribution (one name may resolve to multiple IP addresses)
 - Lots of other stuff that you might use a directory service to find.
 (Wikipedia: List of DNS record types)

DNS protocol, messages

• query and reply messages, both with same message format

Message header

- identification: 16 bit id for query, reply to query uses same id.
- flags: recursion, query/reply
- # Resource Records to follow

← 2 bytes → ← 2 bytes →			
identification	flags		
# questions	# answer RRs	12 bytes	
# authority RRs	# additional RRs		
questions (varia			
answers (varial			
authority (variable # of RRs)			
additional info (variable # of RRs)			

DNS protocol, messages

• <u>query and reply messages, both with same message format!</u>

Binary Protocol!

- Delimiters: pre-defined lengths/field
- Names: <len><name>

Sent via UDP (User Datagram Protocol)

- No connection established
- Not reliable!

← 2 bytes → ← 2 bytes →			
identification	flags		
# questions	# answer RRs		
# authority RRs	# additional RRs		
questions (variable # of questions)			
answers (variable # of RRs)			
authority (variable # of RRs)			
additional info (variable # of RRs)			

DNS Records

DNS: distributed DB storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

<u>type=NS</u>

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

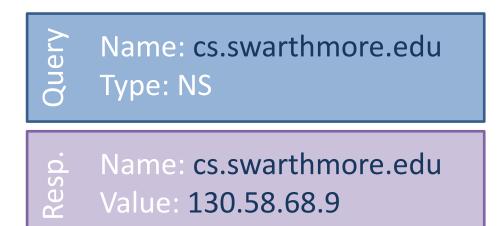
type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really
- servereast.backup2.ibm.com
- value is canonical name

<u>type=MX</u>

 value is name of mailserver associated with name

DNS Types


RR format: (name, value, type, ttl)

- Type = A / AAAA
 - Name = domain name
 - Value = IP address
 - A is IPv4, AAAA is IPv6

Name: cs.swarthmore.edu Value: 130.58.68.9

- Type = NS
 - Name = partial domain
 - Value = name of DNS server for this domain
 - "Go send your query to this other server"

DNS Types, Continued

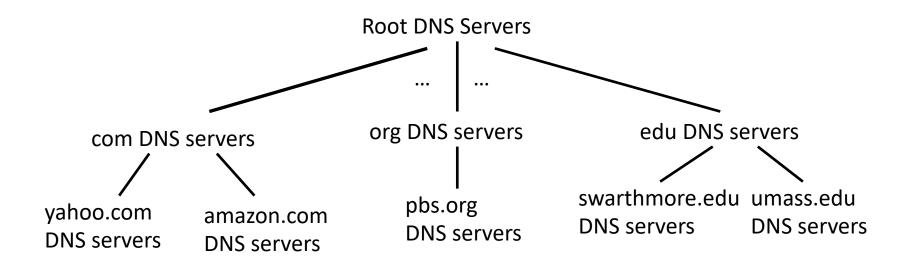
RR format: (name, value, type, ttl)

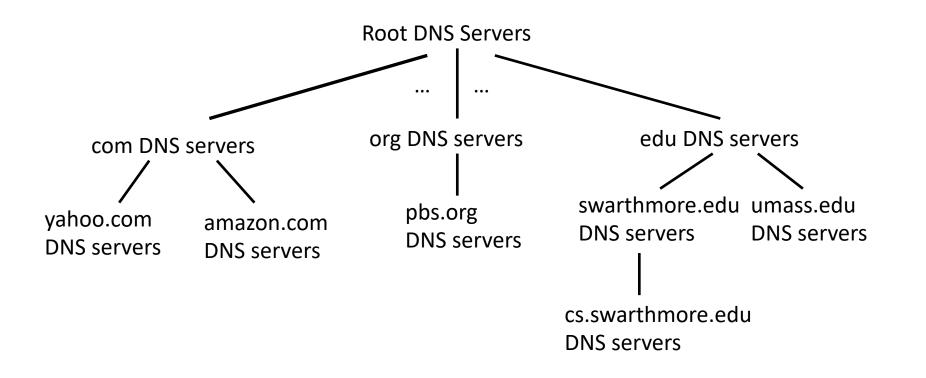
- Type = CNAME
 - Name = hostname
 - Value = canonical hostname
 - Useful for aliasing
 - CDNs use this

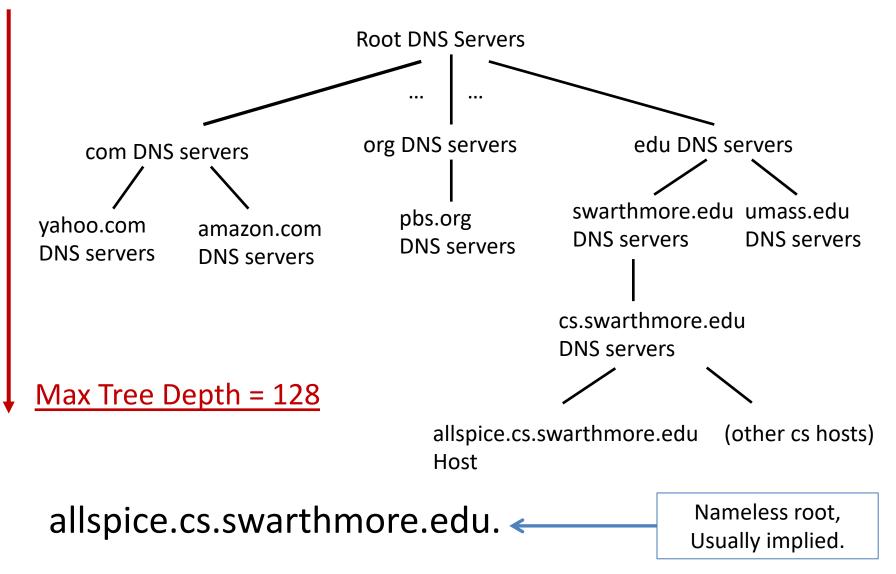
- Name: <u>foo.mysite.com</u> Type: CNAME
- dName: foo.mysite.comValue: bar.mysite.com

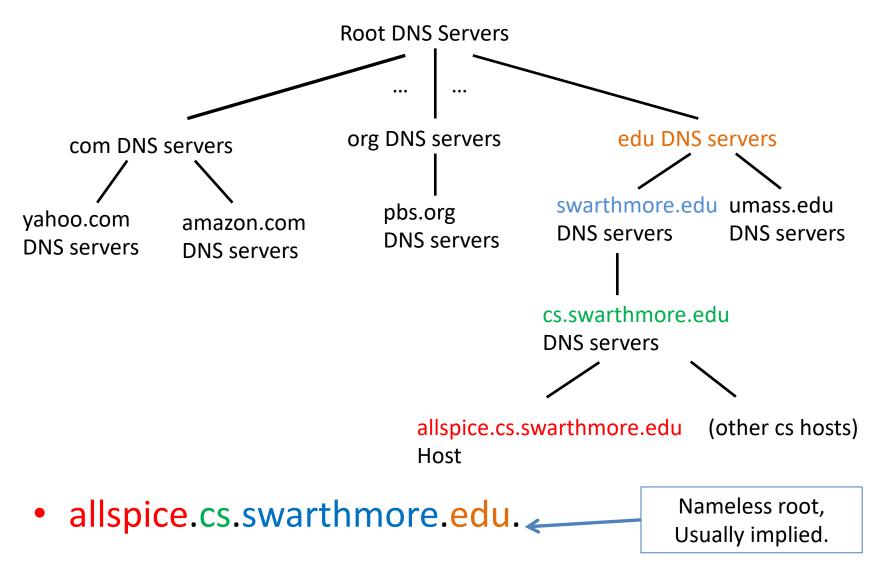
- Type = MX
 - Name = domain in email address
 - Value = canonical name of mail server

Name: cs.umass.edu Type: MX

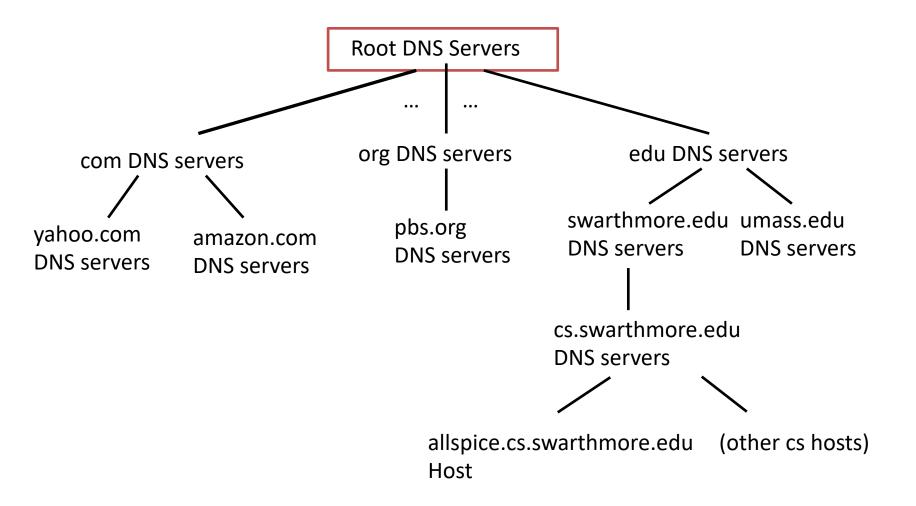

o Name: cs.umass.edu Value: barramail.cs.umass.edu.

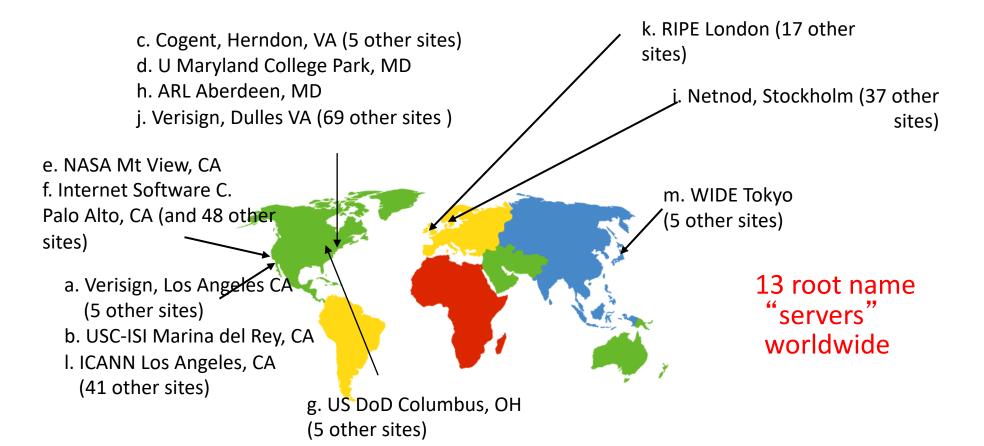

- Distributed administrative control
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Performing the translations
 - Local DNS servers
 - Resolver software


- Distributed administrative control
 - Distributed over a collection of DNS servers
 - Hierarchical name space divided into zones

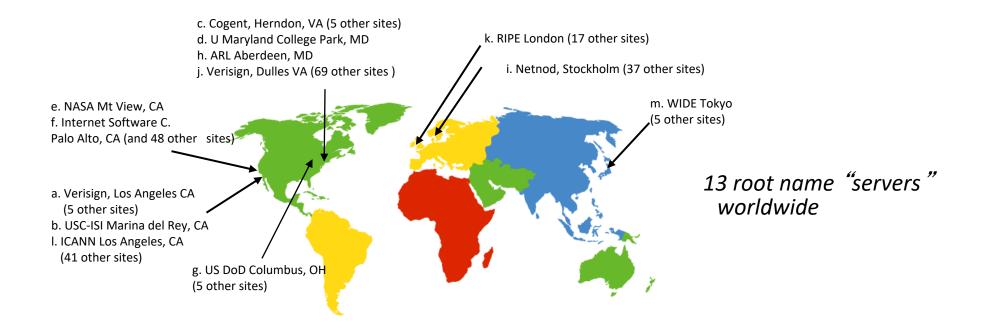

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers

- Performing the translations
 - Local DNS servers
 - Resolver software




Why do we structure DNS like this? Which of these helps the most? Drawbacks?

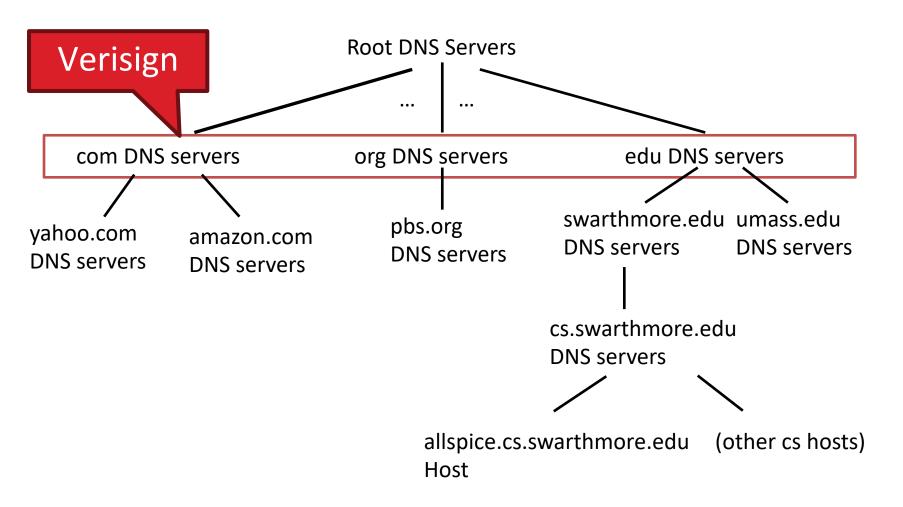
- A. It divides up responsibility among parties.
- B. It improves performance of the system.
- C. It reduces the size of the state that a server needs to store.
- D. Some other reason.


DNS: Root Name Servers

- Root name server:
 - Knows how to find top-level domains (.com, .edu, .gov, etc.)
 - How often does the location of a TLD change?

DNS: Root Name Servers

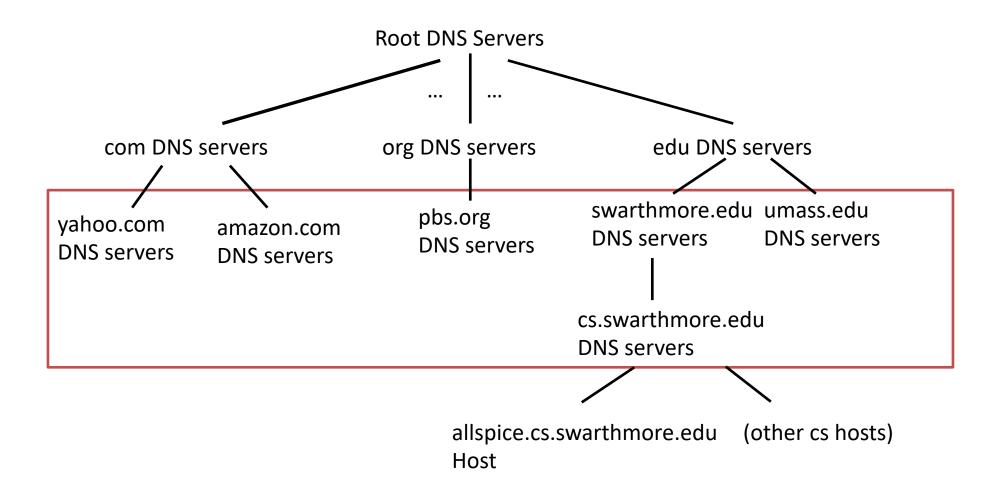
- Root name server:
 - Knows how to find top-level domains (.com, .edu, .gov, etc.)
 - How often does the location of a TLD change?
 - approx. 400 total root servers
 - Significant amount of traffic is not legitimate


Root Name Servers

• Responsible for the Root Zone File

com.	172800 IN	NS a.gtld-servers.net.
com.	172800 IN	NS b.gtld-servers.net.
com.	172800 IN	NS c.gtld-servers.net.

- In practice, most systems cache this information
- Lists the TLDs and who controls them
- ~272KB in size


Top Level Domain (TLD) servers

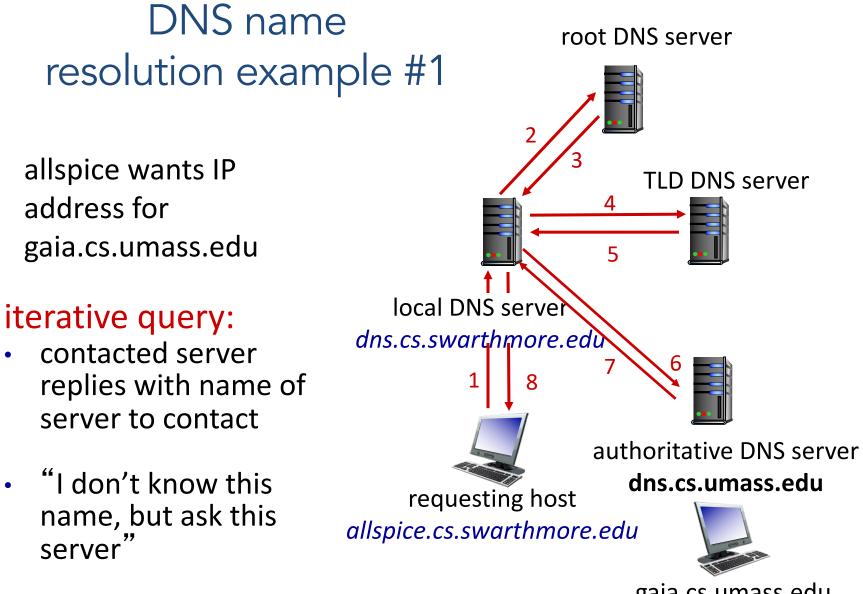
Top Level Domain (TLD) servers

- who maintains the servers?:
 - Verisign: .com, .net
 - Educause: .edu (Verisign backend)
 - local governments or companies
- Responsible for:
 - com, org, net, edu, gov, aero, jobs, museums,
 - all top-level country domains, e.g.: uk, fr, de, ca, jp, etc

Authoritative Servers

Authoritative Servers

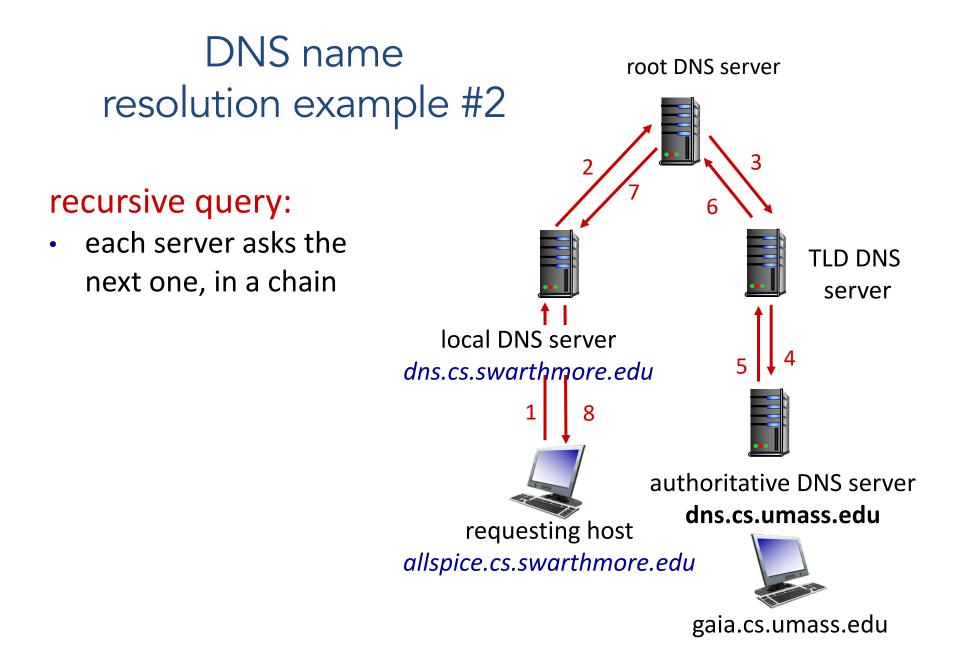
Authoritative DNS servers:

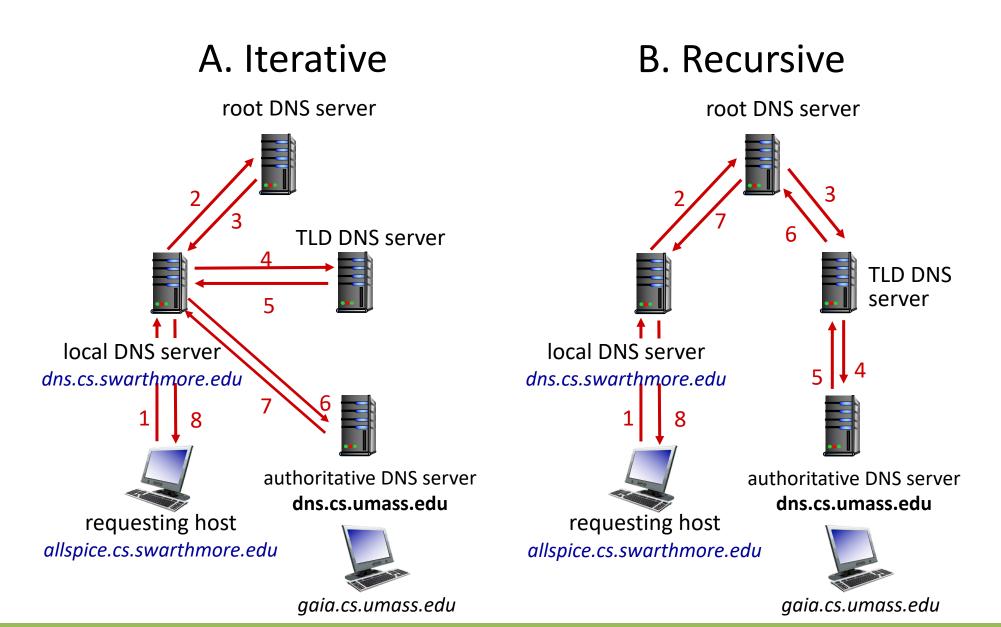

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider, easily changing entries
- Often, but not always, acts as organization's local name server (for responding to look-ups)

Resolution Process

- End host wants to look up a name, who should it contact?
 - It could traverse the hierarchy, starting at a root
 - More efficient for ISP to provide a local server
- ISP's local server for handling queries not necessarily a part of the pictured hierarchy

Local DNS Name Server


- Each ISP (residential ISP, company, university) has (at least) one – also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy


•

•

gaia.cs.umass.edu

Which would you use? Why?

Example: iterative query using dig()

dig . ns

dig +norec demo.cs.swarthmore.edu @a.root-servers.net

dig +norec demo.cs.swarthmore.edu @a.edu-servers.net

dig +norec demo.cs.swarthmore.edu @ibext.its.swarthmore.edu

demo.cs.swarthmore.edu. 259200 IN A 130.58.68.26

How many answers Time to live in seconds How many additional records?

\$ dig @a.root-servers.net www.freebsd.org +norecurse ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57494 ;; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 2 ;; QUESTION SECTION: ;www.freebsd.org. Α IΝ ;; AUTHORITY SECTION: b0.org.afilias-nst.org. 172800 IN NS org. d0.org.afilias-nst.org. 172800 IN NS org. ;; ADDITIONAL SECTION: b0.org.afilias-nst.org. 172800 IN 199.19.54.1 Α d0.org.afilias-nst.org. Α 199.19.57.1 172800 IN

How many answers Time to live in seconds How many additional records?

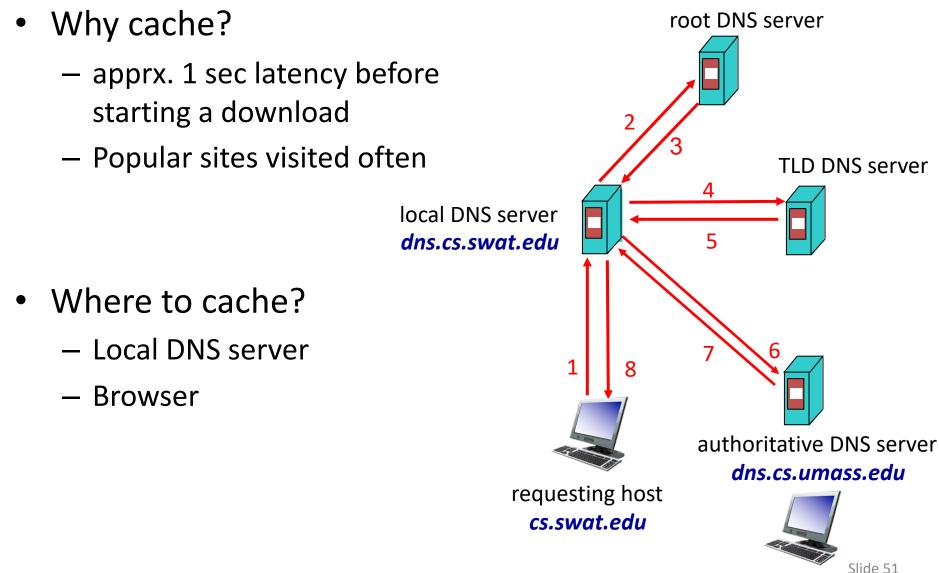
\$ dig @a.root-servers.net www.freebsd.org +norecurse ;; Got answer: ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57494 ;; ;; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 2 ;; QUESTION SECTION: ;www.freebsd.org. ΙN Α ;; AUTHORITY SECTION: 172800 IN b0.org.afilias-nst.org. NS org. d0.org.afilias-nst.org. 172800 IN NS org. ;; ADDITIONAL SECTION: b0.org.afilias-nst.org. 172800 IN А 199.19.54.1d0.org.afilias-nst.org. Α 199.19.57.1 172800 IN

How many answers? How many additional records?

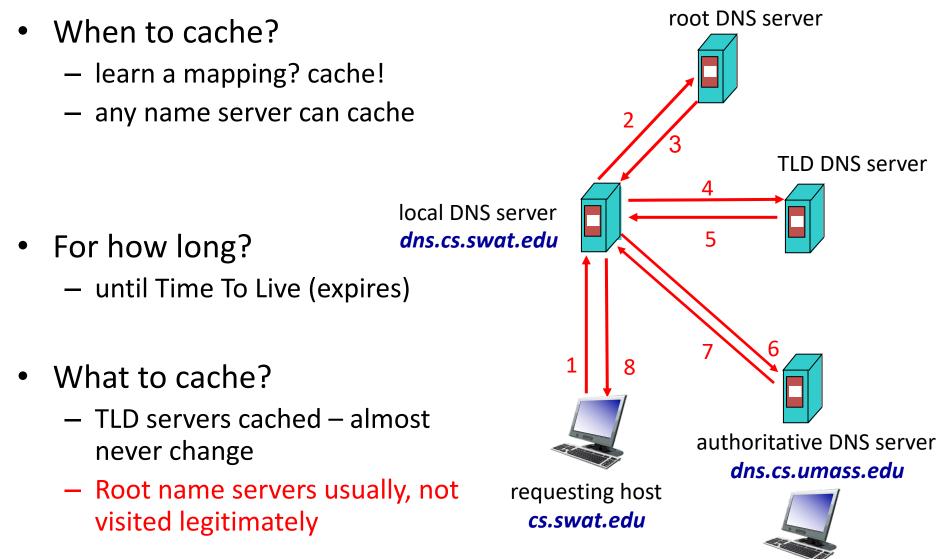
\$ dig @199.19.54.1 www.freebsd.org +norecurse ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39912 ;; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 0 ;; QUESTION SECTION: ;www.freebsd.org. Α IN ;; AUTHORITY SECTION: freebsd.org. 86400 IN NS ns1.isc-sns.net. freebsd.org. 86400 ns2.isc-sns.com. IN NS freebsd.org. NS 86400 ΙN ns3.isc-sns.info.

How many answers? How many additional records?

\$ dig @199.19.54.1 www.freebsd.org +norecurse ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39912 ;; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 0 ;; QUESTION SECTION: ;www.freebsd.org. Α IN ;; AUTHORITY SECTION: freebsd.org. 86400 IN NS ns1.isc-sns.net. freebsd.org. 86400 ns2.isc-sns.com. IN NS freebsd.org. NS ns3.isc-sns.info. 86400 ΙN



<pre>\$ dig @ns1.isc-sns.net www.freebsd.org +norecurse ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17037 ;; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3</pre>									
;; QUESTION SECTION;www.freebsd.org.	N:	IN	А		How many answers? How many authoritative records? How many additional records?				
<pre>;; ANSWER SECTION: www.freebsd.org.</pre>	3600	IN	А	69.147.83.33					
;; AUTHORITY SECTION:									
freebsd.org.	3600	IN	NS	ns2.isc-sns.c	om.				
freebsd.org.	3600	IN	NS	ns1.isc-sns.net.					
freebsd.org.	3600	IN	NS	ns3.isc-sns.info.					
;; ADDITIONAL SECTION:									
ns1.isc-sns.net.	3600	IN	А	72.52.71.1					
ns2.isc-sns.com.	3600	IN	А	38.103.2.1					
ns3.isc-sns.info.	3600	IN	А	63.243.194.1					



<pre>\$ dig @ns1.isc-sns ;; Got answer: ;; ->>HEADER<<- op ;; QUERY: 1, ANSWE</pre>	code: Q	UERY,	status:	NOERROR, id: 1	.7037
;; QUESTION SECTIO ;www.freebsd.org.	N:	IN	А		How many answers? How many authoritative records? How many additional records?
;; ANSWER SECTION:					
www.freebsd.org.	3600	IN	А	69.147.83.33	
;; AUTHORITY SECTI	ON:				
freebsd.org.	3600	IN	NS	ns2.isc-sns.co	om.
freebsd.org.	3600	IN	NS	ns1.isc-sns.net.	
freebsd.org.	3600	IN	NS	ns3.isc-sns.ir	nfo.
;; ADDITIONAL SECT	ION:				
ns1.isc-sns.net.	3600	IN	А	72.52.71.1	
ns2.isc-sns.com.	3600	IN	А	38.103.2.1	
ns3.isc-sns.info.	3600	IN	А	63.243.194.1	

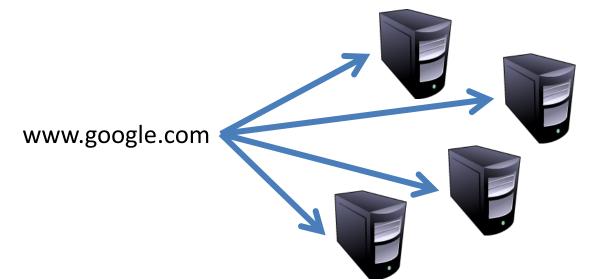
DNS Caching

DNS Caching

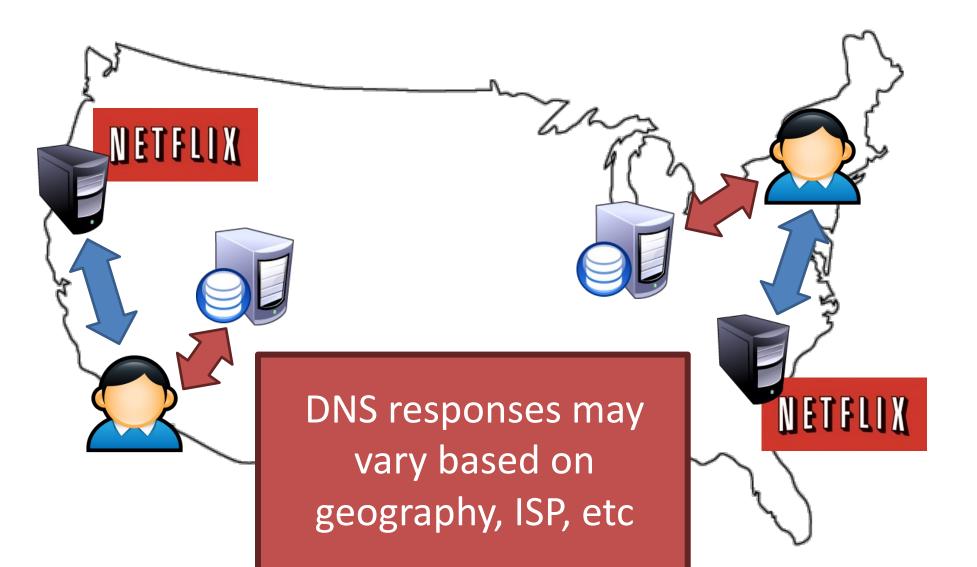
The TTL value should be...

- A. Short, to make sure that changes are accurately reflected
- B. Long, to avoid re-queries of higher-level DNS servers

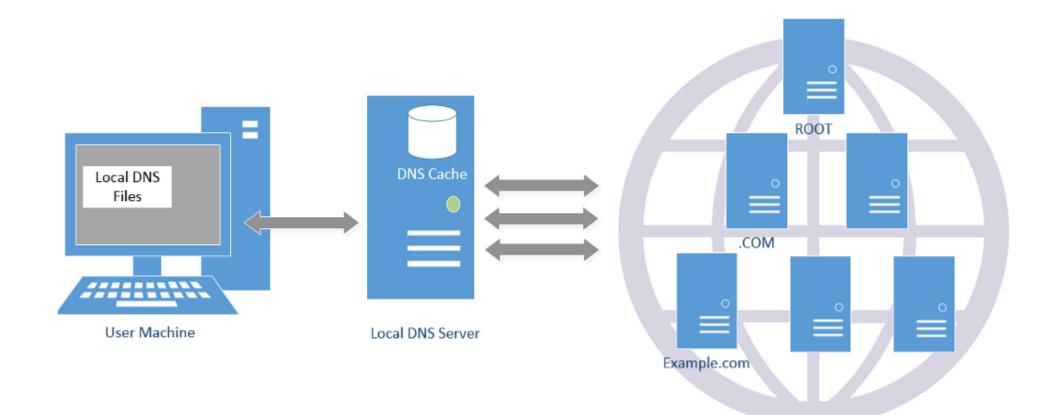
C. Something else


DNS as Indirection Service

- DNS gives us very powerful capabilities
 - Not only easier for humans to reference machines!
- Changing the IPs of machines becomes trivial
 - e.g. you want to move your web server to a new host
 - Just change the DNS record!


Aliasing and Load Balancing

- One machine can have many aliases


 www.reddit.com
 www.foursquare.com
 www.huffingtonpost.com
 - One domain can map to multiple machines

Content Delivery Networks

DNS Query Process and Cache

Caching

- Once (any) name server learns a mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL: time to live)
 - TLD servers typically cached in local name servers
 - Thus root name servers not often (legitimately) visited

Caching

- Once (any) name server learns a mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL: time to live)
 - TLD servers typically cached in local name servers.
 - Root name servers not often (legitimately) visited
- (+) Subsequent requests need not burden DNS
- (-) Cached entries may be out-of-date (best effort!)
 - If host's name or IP address changes, it may not be known Internetwide until all TTLs expire

The TTL value should be...

- A. Short, to make sure that changes are accurately reflected
- B. Long, to avoid re-queries of higher-level DNS servers
- C. Something else

- Step 1: Register networkuptopia.com at DNS registrar
 - provide names, IP addresses of authoritative name server (primary and secondary)

- Step 2: Registrar inserts two RRs into .com TLD server
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 212.212.212.1, A)

- Step 3: Set up authoritative server at that name/address
 - Create records for the services:

- Step 3: Set up authoritative server at that name/address
 - Create records for the services:
 - type A record for www.networkuptopia.com
 - type MX record for @networkutopia.com email

- Example: new startup "Network Utopia"
- Register networkuptopia.com at DNS registrar
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 212.212.212.1, A)
- Set up authoritative server at that name/address
 - Create records for the services:
 - type A record for www.networkuptopia.com
 - type MX record for @networkutopia.com email

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, bypassing root
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus replies to
 DNS server that caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification

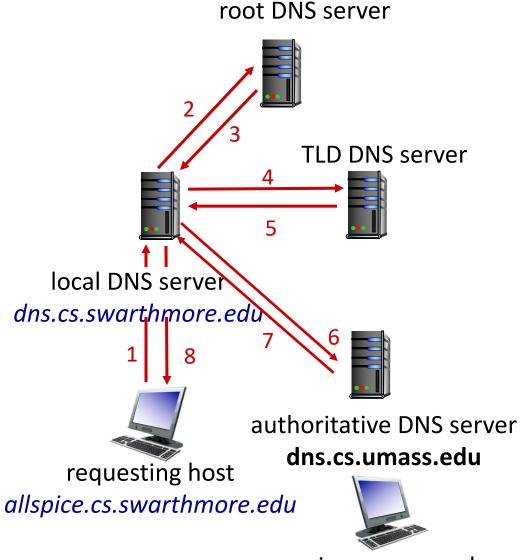
Tools

• dig

- \$ dig cs.swarthmore.edu
- \$ dig cs.swarthmore.edu ns
- \$ dig @dns.cs.swarthmore.edu cs.swarthmore.edu mx
- \$ man dig
- host
 - \$ host cs.swarthmore.edu
 - \$ host -t ns cs.swarthmore.edu
 - \$ host -t mx cs.swarthmore.edu dns.cs.swarthmore.edu
 - \$ man host

Tools (cont)

- nslookup
 - \$ nslookup cs.swarthmore.edu
 - \$ nslookup cs.swarthmore.edu dns.cs.swarthmore.edu
- whois
 - \$ whois google.com
 - \$ whois swarthmore.edu


DNS security

DNS Vulnerabilities:

- No authentication
- Connectionless transport layer protocol (UDP)

DNS Attacks:

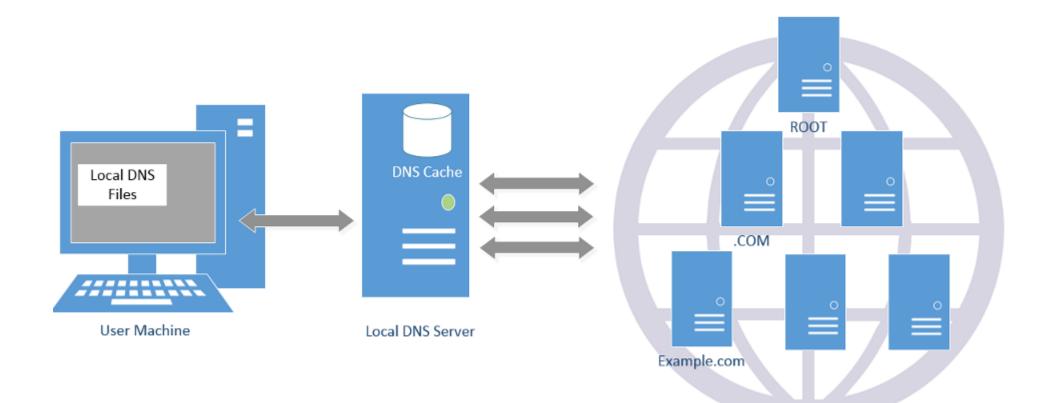
- Amplification Attack
- Cache Poisoning
- Man-in-the-middle
- DNS Redirection
- DDoS
- DNS Injection

gaia.cs.umass.edu

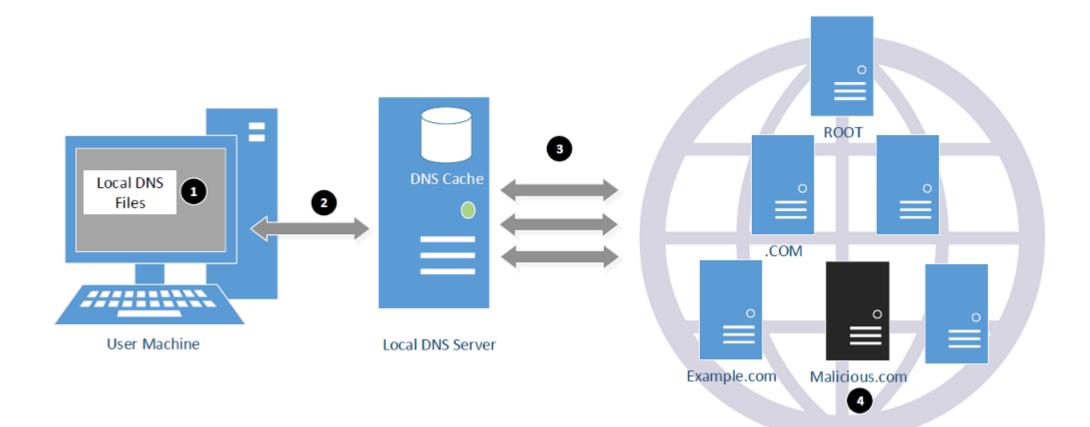
Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, bypassing root
- Bombard TLD servers
 - Potentially more dangerous


Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus replies to DNS server that caches

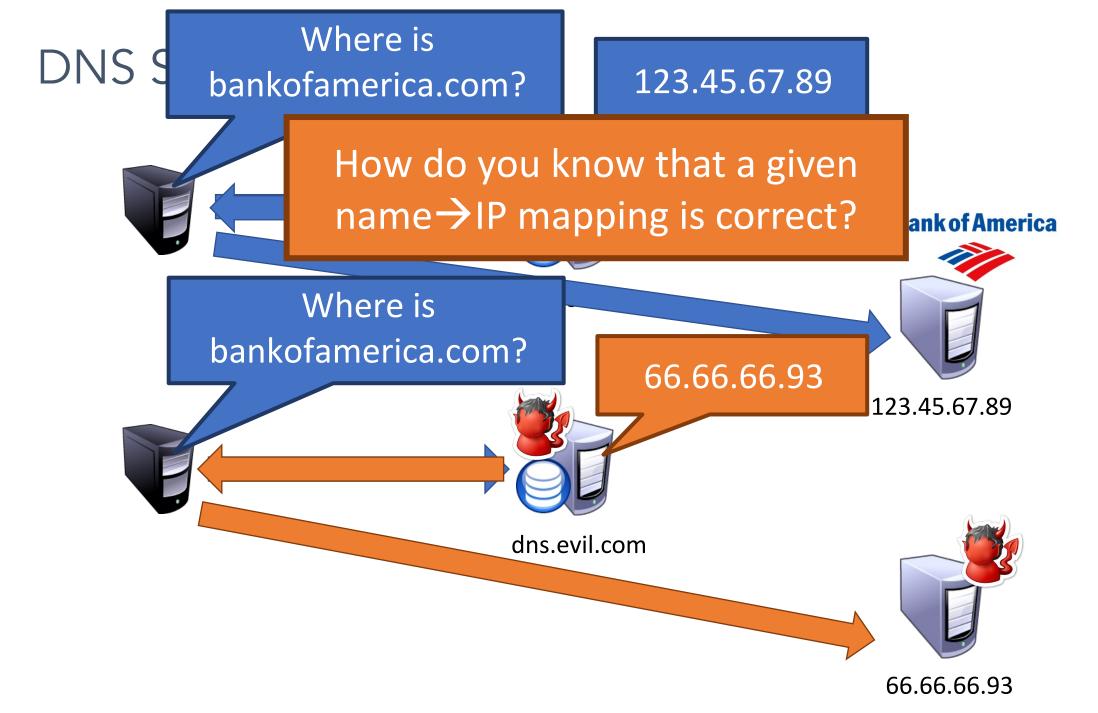

Exploit DNS for DDoS

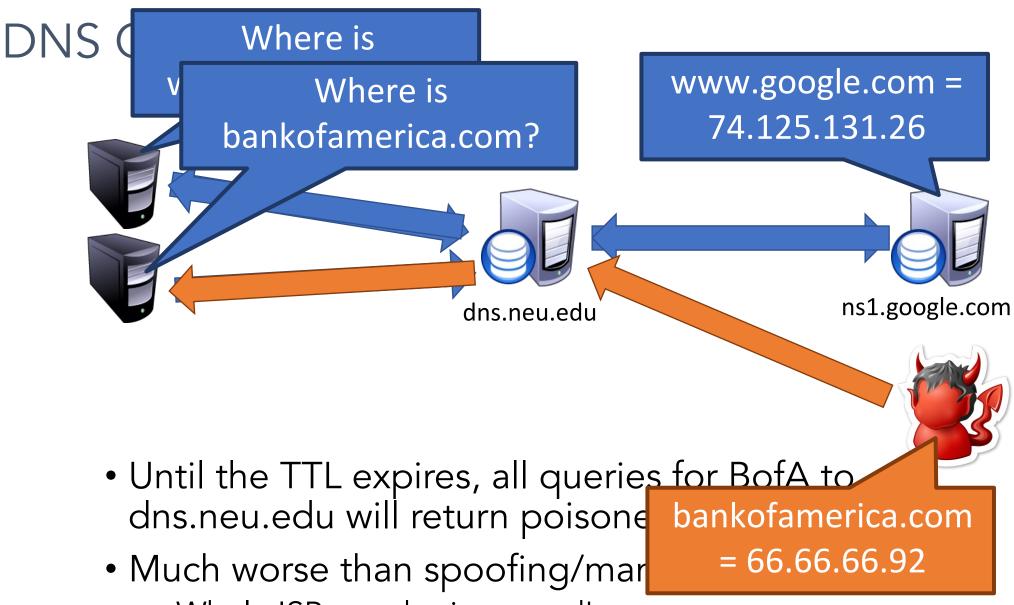
- Send queries with spoofed source address: target IP
- Requires amplification

DNS Query Process and Cache

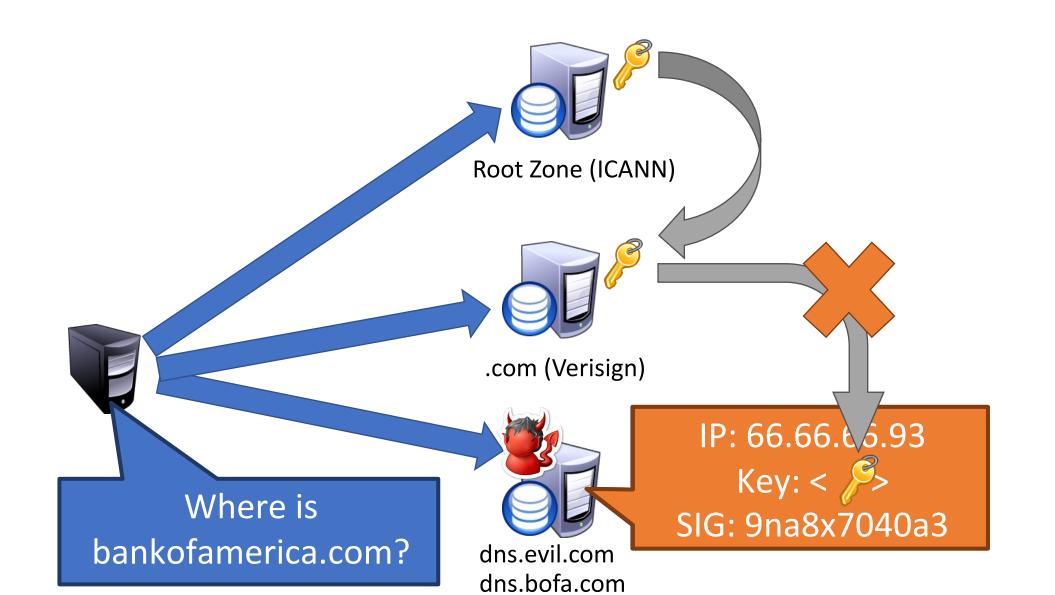
Attack Surface Overview

Denial Of Service


- Flood DNS servers with requests until they fail
- October 2002: massive DDoS against the root name servers
 - What was the effect?
 - ... users didn't even notice
 - Root zone file is cached almost everywhere
- More targeted attacks can be effective
 - Local DNS server \rightarrow cannot access DNS
 - Authoritative server \rightarrow cannot access domain


DNS Hijacking

- Infect their OS or browser with a virus/trojan
 - e.g. Many trojans change entries in /etc/hosts
 - *.bankofamerica.com \rightarrow evilbank.com
- Man-in-the-middle


- Response Spoofing
 - Eavesdrop on requests
 - Outrace the servers response

• Whole ISPs can be impacted!

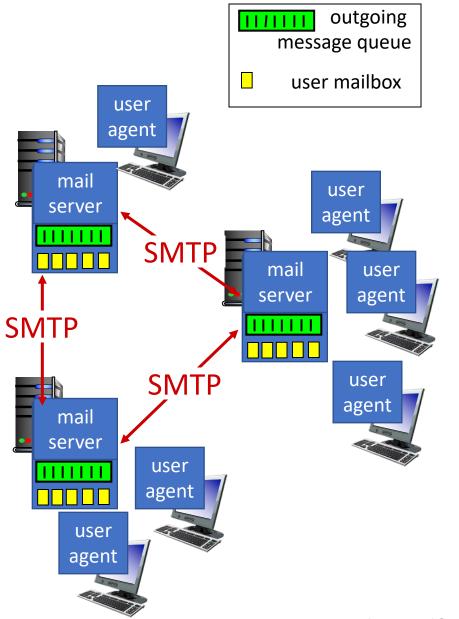
DNSSEC Hierarchy of Trust

Solution: DNSSEC

- Cryptographically sign critical resource records
 - Resolver can verify the cryptographic signature
- Two new resource types
 - Type = DNSKEY
 - Name = Zone domain name
 - Value = Public key for the zone
 - Type = RRSIG
 - Name = (type, name) tuple, i.e. the
 - Value = Cryptographic signature of the query results

Creates a hierarchy of

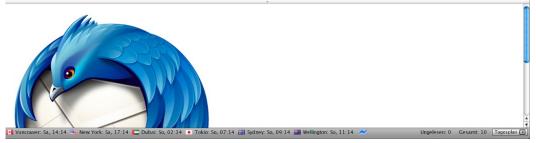
trust within each zone


Today

- Three main parts to email:
 - Mail User Agent
 - Mail Transfer Agent
 - SMTP protocol used to negotiate transfers
- SMTP Protocol
- Mail Access Protocols
 - POP3
 - IMAP
 - Webmail

Electronic mail

Three major components:


- mail user agent (MUA)
- mail transfer agent (MTA)
- simple mail transfer protocol

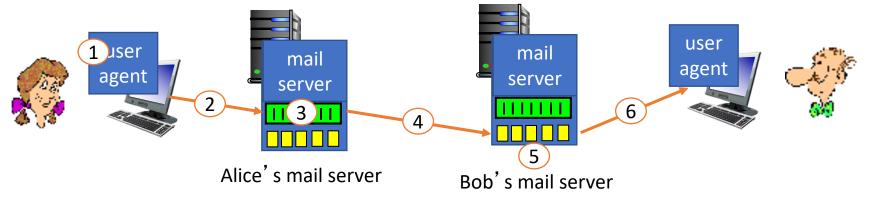
Mail User Agent a.k.a "mail reader"

- composing, editing, reading mail messages
- Outlook, Thunderbird, iPhone mail client

	DACmotorwelt - Mail - Mozilla Thunderbird				0 0 0		
(2)	3 (1) (1)	😒 🕨	Ansicht:	Alle	•	Q- In allen Konten suchen	Q
ADACmotorwelt - Mail	∫ 🗂	Kalender	Au Au	fgaben			曲 🗇 🔢
Alle Ordner O O	🕈 🎮 Datum	A Von			Betreff		8 • 4
✓ Feeds & Blogs	29.01.2010 11:				E-Klasse ist das Liebling		
Papierkorb	27.11.2009 11:					mit vielen Überraschungen	
ss motojournal	30.10.2009 13	47 ADACmotorwelt			Jetzt im neuen Design: D	as aktuelle E-Paper liegt für Sie vor	
55 motosketches	25.09.2009 12:	53 ADACmotorwelt			Exklusiver Fahrbericht: S	o gut ist der neue Opel Astra	
RSD Blog	28.08.2009 12:	49 ADACmotorwelt			IAA: Die Zukunft steht vo	r der Tür	
▼ Mail	31.07.2009 11:	43 ADACmotorwelt			Wird Diesel immer teure	1?	
	26.06.2009 12:	17 ADACmotorwelt			Praxistest: Beurteilen Sie	Ihr Auto und Ihre Werkstatt!	
▼ 🕘 Posteingang	29.05.2009 10:	48 ADACmotorwelt			Diese Karte rettet Leben		
ADACmotorwelt	24.04.2009 12:	17 ADACmotorwelt			Protest: 53 Pfennige für	einen Liter Benzin	
H-D/Buell News	27.03.2009 12:	57 ADACmotorwelt			Zeitlose Schönheit: Drei	Coupés im Vergleich	
🛅 S							
Entwürfe							
Gesendet							
Spam							
Papierkorb							
Postausgang							
C							

Mail Transfer Agent. a.k.a mail servers

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages (one-way)
 - client: sending mail server
 - "server": receiving mail server


If you were designing email, what would happen when Alice sends an email to Bob?

- A. Alice mail **client** -> Bob's mail **server**
- B. Alice mail **server** -> Bob's mail **server**
- C. Alice mail **client** -> Bob's mail **client**
- D. Alice mail **server** -> Bob's mail **client**

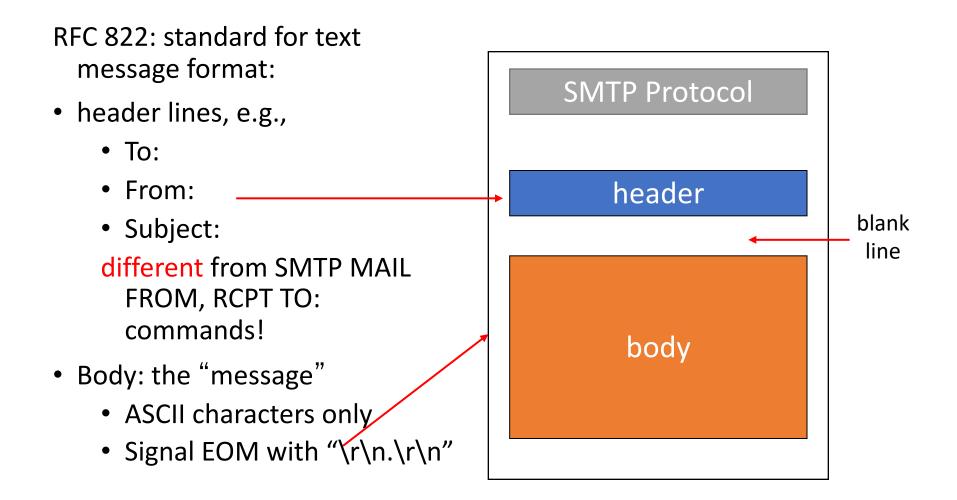
Scenario: Alice sends message to Bob

- Alice uses a MUA to compose message "to" bob@swarthmore.edu
- 2) Alice's MUA sends message to her mail server; message placed in message queue
- 3) client side of SMTP opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his MUA to read message

Mail Servers: Ever Vigilant

- Always on, because they always need to be ready to accept mail.
- Usually owned by ISP
 - You use the email server for either Swarthmore College, or the CS department.


Simple Mail Transfer: SMTP [RFC 2821]

- TCP: reliably transfer email message from client to server, port
 25
- Direct transfer: sending server to receiving server
- Messages must be in 7-bit ASCII
- Command/response interaction (like HTTP, FTP)
 - commands: ASCII text
 - response: status code and phrase

Simple Mail Transfer: SMTP [RFC 2821]

- Direct transfer: sending server to receiving server
- Three phases of transfer
 - handshaking (greeting), MAIL FROM:, RCPT TO:
 - transfer of messages
 - closure

SMTP Message Format

Try SMTP interaction for yourself:

- telnet allspice.cs.swarthmore.edu 25
- You should see a 220 reply from the server.
- enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

(lets you send email without using email client (MUA))

Sample SMTP interaction

\$ telnet allspice.cs.swarthmore.edu 25

Trying 130.58.68.9...

Connected to allspice.cs.swarthmore.edu

220 allspice.cs.swarthmore.edu ESMTP Postfix

HELO cs.swarthmore.edu

250 allspice.cs.swarthmore.edu

MAIL FROM:<chaganti@cs.swarthmore.edu>

250 2.1.0 OK

RCPT TO:<chaganti@cs.swarthmore.edu>

250 2.1.5 OK

DATA

354 End data with <CR><LF>.<CR><LF>

To: Vasanta Chaganti <chaganti@cs.swarthmore.edu>

From: Vasanta Chaganti <chaganti@cs.swarthmore.edu>

Subject: Telnet test message

This is a test message, via telnet, to myself.

Sample SMTP interaction

\$ telnet allspice.cs.swarthmore.edu 25

Trying 130.58.68.9...

Connected to allspice.cs.swarthmore.edu

220 allspice.cs.swarthmore.edu ESMTP Postfix

HELO cs.swarthmore.edu

250 allspice.cs.swarthmore.edu

MAIL FROM:<chaganti@cs.swarthmore.edu>

250 2.1.0 OK

RCPT TO:<chaganti@cs.swarthmore.edu>

250 2.1.5 OK

DATA

354 End data with <CR><LF>.<CR><LF>

To: Vasanta Chaganti < chaganti@cs.swarthmore.edu>

From: Vasanta Chaganti <chaganti@cs.swarthmore.edu>

Subject: Telnet test message

This is a test message, via telnet, to myself.

End of message: CRLF (Dot) CRLF

What keeps us from entering a fake information (e.g., FROM address)?

- A. Nothing.
- B. The MTA checks that the FROM is valid.
- C. We enter a name/password logging into the MTA.

Wait, this seems too horrible to be true. Surely we can prevent header forging?

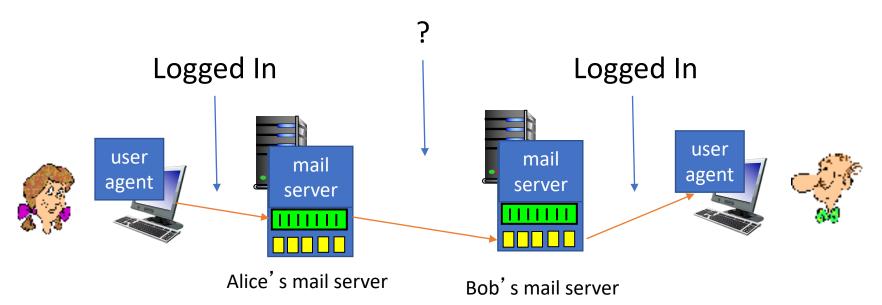
(How or why not?)

A. Yes

B. No

Lecture 12 - Slide 95

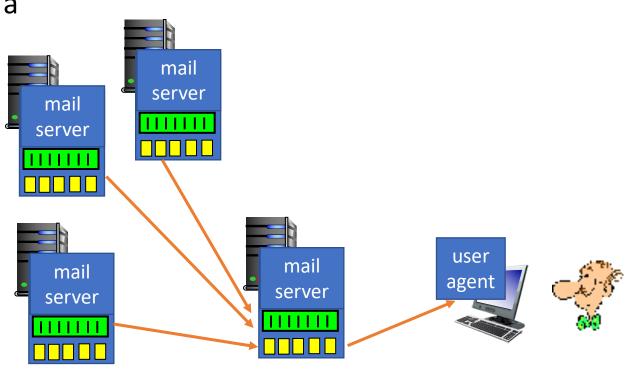
Message Signing


- 1. Sender creates cryptographic public/private key pair, publishes public key to the world.
- 2. Sender uses private key to sign messages.
- 3. Receiver can verify*, using published public key, that only the holder of the corresponding private key could have sent the message.

* With very high probability.

Message Signing: Challenges

- Disseminating public keys
 - How do you trust that the published public key isn't also a lie?
- It's more work, can't be bothered...
 - Adoption is very low


Logging In / Passwords

Logging In / Passwords

Any mail server may need to send a message to Bob's.

Tough for them all to share credentials...

Bob's mail server

SMTP versus HTTP

- HTTP: pull
- SMTP: push
- Both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response message
- SMTP: multiple objects sent in multipart message

SMTP: final words

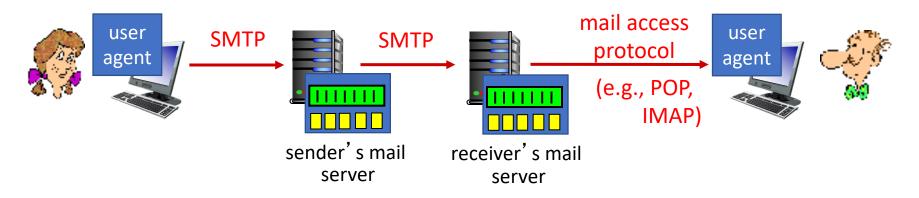
- SMTP uses persistent connections
 - Can send multiple emails in one session
- SMTP requires message (header & body) to be in 7bit ASCII
- SMTP server uses CRLF.CRLF to determine end of message

If SMTP only allows 7-bit ASCII, how do we send pictures/videos/files via email?

- A. We encode these objects as 7-bit ASCII
- B. We use a different protocol instead of SMTP
- C. We're really sending links to the objects, rather than the objects themselves

Base 64

- Designed to be an efficient way to send binary data as a string
- Uses A-Z, a-z,0-9, "+" and "/" as digits
- A number with digits $d_n d_{n-1} \dots d_1 d_0 = 64^n d_n + 64^{n-1} d_{n-1} + \dots + 64^n d_1 + d_0$
- Recall from CS 31: Other non-base-10 number systems (binary, octal, hex).


Multipurpose Internet Mail Extensions (MIME)

- Special formatting instructions
- Indicated in the header portion of message (not SMTP)
 - SMTP does not care, just looks like message data
- Supports
 - Text in character sets other than ASCII
 - Non-text attachments
 - Message bodies with multiple parts
 - Header information in non-ASCII character sets

MIME

- Adds optional headers
 - Designed to be compatible with non-MIME email clients
 - Both clients must understand it to make sense of it
- Specifies content type, other necessary information
- Designates a boundary between email text and attachments

Mail access protocols

- SMTP: delivery/storage to receiver's server
- mail access protocol: retrieval from server
 - POP: Post Office Protocol: authorization, download
 - IMAP: Internet Mail Access Protocol: more features, including manipulation of stored messages on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 protocol

authorization phase

- client commands:
 - user: declare username
 - **pass:** password
- server responses
 - +OK
 - -ERR

transaction phase, client:

- list: list message numbers
- retr: retrieve message by number
- dele: delete
- quit

-	S:	+OK POP3 server ready						
	C:	user bob						
	S:	+OK						
	C:	pass hungry						
	S:	+OK user successfully logged on						
	<u> </u>	list						
	S:	1 498						
	S:	2 912						
	s:	•						
	C:	retr 1						
	s:	<message 1="" contents=""></message>						
	s:	•						
	C:	dele 1						
	C:	retr 2						
	S:	<message 1="" contents=""></message>						
	S:	•						
	C:	dele 2						
	C:	quit						
	S:	+OK POP3 server signing off						

More about POP3

- Previous example uses "download and delete" mode — Bob cannot re-read e-mail if he changes client
- POP3 "download-and-keep": copies of messages on different clients
- POP3 is stateless across sessions
- Limitations:
 - Can't retrieve just the headers
 - Can't impose structure on messages

IMAP

- Keeps all messages in one place: at server
- Allows user to organize messages in folders
- Keeps user state across sessions:
 - names of folders and mappings between message IDs and folder name
- Can request pieces of a message (e.g., text parts without large attachments)

Webmail

- Uses a web browser
- Sends emails using HTTP rather than POP3 or IMAP
- Mail is stored on the 3rd party webmail company's servers

- Three main parts to email:
 - Mail User Agent (mail client): read / write for humans
 - Mail Transfer Agent: server that accepts / sends messages
 - SMTP protocol used to negotiate transfers
- No SMTP support for fraud detection
- Extensions (MIME) and encodings (Base64) for sending non-text data