CS 43: Computer Networks

05:Network Services and Distributed
Systems

September 19, 2024

L ast class

* [nter-process communication using message passing
* How send and recv buffers work
* Concurrency

Today

e Server side TCP Sockets

* Application-layer communication paradigms:
— Client-Server
— Peer-to-peer architecture

e Distributed network applications: Sources of
complexity

Where we are

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

What is a socket?

An abstraction through which an application may send
and receive data,

in the same way as a open-file handle allows an
application to read and write data to storage.

Sockets

* Process sends/receives messages to/from its socket

e Application has a few options, operating system handles the details

— Choice of transport protocol (TCP, etc.)

application

P

/ socket \

<

Internet

»

application

Cprocess D T——

~

<«

Iarte
SN

>

controlled by
app developer

controlled
by OS
\

g

Slide 6

host

A\ 4

Ethernet
interface

Addressing Sockets

e |P address identifies device interface

 How do we identify different
applications running on the same

device?
router router
IP IP
: | Ethernet SONET | :: SOI\'IET Ethernet
: | interface interface | :: | interface interface :

host

Ethernet
interface

Slide 7

host

TCP

A\ 4

Ethernet
interface

Addressing Sockets

* |P address identifies device interface
* Need another identifier: port
— 16-bit, unsigned integer value
— Differentiates sockets
* TCP Socket identified by:
— (source IP, source port, dest IP, dest port)

router router

IP IP
: | Ethernet SONET | :: SOI\'IET Ethernet
: | interface interface | :: | interface interface i
H . E | E

host

TCP

Ethernet
interface

Connection-oriented: example

= TCP socket identified by 4- = server host may support

tuple: many simultaneous TCP
 source |P address sockets:
* source port number * each socket identified by
e dest IP address its own 4-tuple

= web servers have different
sockets for each connecting
client

e dest port number

= Receiver uses all four
values to direct segment to

appropriate socket * non-persistent HTTP will

have different socket for
each request

Slide 9

Connection-oriented: HTTP example

A socket is uniquely identified by (source IP, source port, dest IP, dest port)

application

transport

network
link
physical

Slide 10

Connection-oriented:

TTP example

A socket is uniquely identified by (source IP, source port, dest IP, dest port)

source port: 9000

application
application - - -
Ny
o 4= ‘tran< port
trangport rletwork
netivork lilk
link bhydical
[‘{ phyical server: |P
s address B

host: IP source IP,port: B,80
address A dest IP,port: A,9000

source IP,port: A,9000
dest IP, port: B,80

source IP,port: C,5000

dest IP,port: B,80

P2 source P3 source
port: port:
5000 5050
application
|l a y In
transport
network
link
physical !' \
host: IP
address C

source IP,port: C,5050

dest IP,port: B,80

Slide 11

Connection-oriented: example

application

al 4

tranlsport

net*vork

lihk

phygical

g

host: IP
address A

source IP,port: B,80
dest IP,port: A,9157

threaded server

application

source IP,port: A,9157
dest IP, port: B,80

dest IP,port: B,80

application
network
link
server: IP physical ‘,
address B p\,/"’
«+ host: IP
— source IP,port: C,5775 address C

source IP,port: C,9157

dest IP,port: B,80

Slide 12

Multiplexing/Demultiplexing

application

—_ ls—f different applications, and
sockets

transport

network

link

physical

v common IP: same end host

Multiplexing:
— gather data packets from multiple sockets,

— encapsulate each packet with transport header inforation

— pass the packet to the network layer to send it over a shared
communication channel.

Slide 13

Multiplexing/Demultiplexing

application

—1 different applications, and
‘ \A}' sockets
ransport

network

link

physical

common IP: same end host

De-Multiplexing:
— examine transport layer header of data packet sent from the network layer
— identify receiving socket
— deliver data to the correct socket for each application

Slide 14

Application Design: Client-Server architecture

* Client:
— Initiates communication
— must know the address and port of the server
— active socket
* Server:
— passively waits for and responds to clients
— passive socket

Slide 15

q Client

socket()

A

connect()

v

send()

v

recv()

v

close()

TCP Socket Procedures: Client

create a new communication endpoint

actively attempt to establish a connection

send some data over a connection
receive some data over a connection

release the connection

Slide 16

TCP socket procedures for a web server

socket()

!

bind()

v

listen()

v

accept()

v

recv()

v

send()

v

close()

socket: create a new communication endpoint

bind: attach a local address to a socket

listen: announce willingness to accept connections

accept: block caller until a connection request arrives

recv: receive some data over a connection

send: send some data over a connection

close: release the connection

Running a Web Server over TCP

Server

socket() socket()
bind()
listen()

v v
accept() € > connect()
v J
recv() |& send()
v !
send() > recv()
v J
CIOSE() Close()

J Client

V

Slide 18

Dedicat
ed
Socket
Per

Client :

client_
sock

Running a Web Server

Server

socket(): create a TCP serverSocket

v

bind(): Bind serverSocket to a local address

v

listen(): alert TCP, of your willingness to accept
incoming connections on serverSocket from

_

clients

accept(): accept a new client connection, and
create a dedicated new socket,
connectionSock, for the client.

Client

socket(): create a TCP clientSocket

A

connect(): attempt to establish a
connection with a remote server using

clientSock

recv(): read HTTP request from connectionSock

|

send(): generate an HTTP GET request,
and send it to the server using clientSock

!

| |
send(): retrieve the file, and send the HTTP
response + message on connectionSock

v

I close(): close connectionSocket, and and accept I

new client connections

recv(): receive an HTTP response on
clientSock and save or render the

webpage

close(): close clientSocket at the end
of the transaction

Slide 19

