CS 43: Computer Networks

05: HTTP Concurrency and Performance
September 17, 2024

SWARTHMORE COLLEGE

Slides adapted from Kurose & Ross, Kevin Webb

Reading Quiz

Announcements

* TA for the course: Marcus Wright
— Office Hours: 2 —4pm in Overflow.

* Regarding missed classes/labs

— three free misses on classes

— |ab attendance is mandatory

Slide 9

Midterm Scheduling: Monday Oct 215t 7 — 8.30 PM

Can you make this time?

A. Yes
B. No

Slide 10

Client-Server communication

* Client:
— Initiates communication
— must know the address and port of the server
— active socket
* Server:
— passively waits for and responds to clients
— passive socket

Slide 11

What is a socket?

An abstraction through which an application may send and receive
data,

in the same way as a open-file handle or file pointer allows an
application to read and write data to storage.

Sockets

= process sends/receives messages to/from its socket
= socket analogous to door
* sending process shoves message out door

* sending process relies on transport infrastructure on other side of door to
deliver message to socket at receiving process

* two sockets involved: one on each side

application application

controlled by
app developer

socket
\

controlled
by OS
=

=

Internet

A
v

Slide 13

Blocking Summary

send() recv()

* Blocks when socket buffer for sending * Blocks when socket buffer for receiving
is full is empty

* Returns less than requested size when * Returns less than requested size when
buffer cannot hold full size buffer has less than full size

Always check the return value!

Slide 14

Server con nect()
socket() socket()
bind()
v
listen()

v v
accept() > connect()
v !
recv() send()
v {
send() > recv()
v !
close() close()

q Client

§

Server

socket()

send(), recv()

!

socket()

bind()

v

listen()

v

accept()

A 2

v

connect()

recv()

v

v

send()

send()

v

v

recv()

v

close()

close()

1 Client

¥

Request Method Types (“verbs”)

HTTP/1.0 (1996):

GET:
— Requests page.
POST:

— Uploads user response to
a form.

HEAD:

— asks server to leave
requested object out of
response

HTTP/1.1 (1997 & 1999):

GET, POST, HEAD

PUT

— uploads file in entity body
to path specified in URL
field

DELETE

— deletes file specified in
the URL field

TRACE, OPTIONS,
CONNECT, PATCH

Persistent connections

Slide 17

Uploading form input

GET (in-URL) method:
e uses GET method

* inputis uploaded in URL field of request line:

www.somesite.com/animalsearch?monkeys&banana

POST method:
* web page often includes form input

* inputis uploaded to server in request entity body

Slide 18

GET vs. POST

GET can be used for idempotent requests

* |dempotence: an operation can be applied multiple times

without changing the result (the final state is the same)

GET vs. POST

GET can be used for idempotent requests

 |dempotence: an operation can be applied multiple times without changing the result (the
final state is the same)

Q: How many of the following operations are idempotent?

|. Incrementing a variable Ill. Allocating Memory
Il. Assigning a value to a V. Compiling a program
variable
A. None of them D. Three of them
B. One of them E. Allof them

C. Two of them

GET vs. POST

GET can be used for idempotent requests

* |dempotence: an operation can be applied multiple times without changing the
result (the final state is the same)

Q: How many of the following operations are idempotent?

|. Incrementing a variable Ill. Allocating Memory
Il. Assigning a value to a V. Compiling a program
variable
A. None of them D. Three of them
B. One of them E. Allof them

C. Two of them

Slide 21

GET vs. POST

GET can be used for idempotent requests.

* |dempotence: an operation can be applied multiple times without
changing the result (the final state is the same)

Slide 22

GET vs. POST

POST should be when:

A request changes the state of the server or DB

Sending a request twice would be harmful: (Some) browsers
warn about sending multiple post requests

Users are inputting non-ASCI| characters
Input may be very large

— You want to hide how the form works/user input

When might you use GET vs. POST?

Forum post Search terms, Pizza order
Search terms, Pizza order Forum post
Search terms Forum post, Pizza order

Forum post, Search terms, Pizza Order

m O 0O o >

Forum post, Search terms, Pizza Order

Slide 24

When might you use GET vs. POST?

m O O o >

Forum post Search terms, Pizza order
Search terms, Pizza order Forum post
Search terms Forum post, Pizza order

Forum post, Search terms, Pizza Order

Forum post, Search terms, Pizza Order

Slide 25

State(less)

IMA BROWSER.| | OH BoY! I CAN HELP! | | YERH. SURE, BUT THIS 1S WHAT ARTICLE?
{_DUXER;DSEE LETMEGET ITFOR— | |Z conppLt HEY. TVE TUSTYOLRP’;QGLE THE ONE I—)
HIS ICLE. ..WHOA! YOURE A ‘ GOT THIS NEW MOGILE SITES MAIN E. YO
SARTHONE GER? || eracaloF 1y SIE! | | WHERES THE I(_“”O e Yo
CHECK [T OUT! ARTICLE T WANTED o) HIl TMASERVER!

:\//,

(XKCD #869, “Server Attention Span”)

Slide 26

HTTP State

Does the HTTP protocol, allow for a server to keep track of every client?

A. Yes, it’s required to
B. No, it would not scale

C. That’s against privacy rules!
D. Something else

State(less)

e Original web: simple document retrieval

* Maintain State? Server is not required to keep state between connections

...often it might want to though

* Authentication: Client is not required to identify itself

— server might refuse to talk otherwise though

Slide 28

User-server state: cookies

What cookies can be used for:

e authorization

* shopping carts

* recommendations

e user session state (Web e-mail)
How to keep “state”:

. protocol endpoints: maintain state at sender/receiver over multiple
transactions

- cookies: http messages carry state

Slide 29

What Are Cookies Used For?

e Authentication

— The cookie proves to the website that the client previously
authenticated correctly

* Personalization

— Helps the website recognize the user from a previous visit
* Tracking

— Follow the user from site to site;

— Read about iPads on CNN and see ads on Amazon @

— How can an advertiser (A) know what you did on another site
(S)?

Cookies: keeping “state” (cont.)

client q
-

Sy
T

ebay 8734

usual http request msg

cookie file

N

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678

usual http response msg

one week later:

-

ebay 8734

—

usual http request msg
cookie: 1678

amazon 1678

usual http response msg

Amazon server

server

creates ID backend
1678 for user create database
entry
cookie- access
specific «
action /’
access
cookie-

— specific

action

Slide 31

User-server state: cookies

Many web sites use cookies
Four components:
1) cookie header line of HTTP response message
2) cookie header line in next HTTP request message
3) cookie file kept on user’s host, managed by user’s browser

4) back-end database at Web site

Slide 32

Cookies and Privacy

Cookies permit sites to learn a lot about you

supply name and e-mail to sites (and more!)

third-party cookies (ad networks) follow you across multiple sites.

Hello office of tomorrow

Designed for the new ways you work

LEARN MORE

&he New Hork Times

Today's Paper

Slide 33

Cookies and Privacy

Cookies permit sites to learn a lot about you

You could turn them off ...but good luck doing anything on the
internet!

< C @& github.swarthmore.edu
O Enterprise Pull requests
.+ vchagani~
Discover interestir
Repositories New

Your news feed helps you k

Explore GitHub

Slide 34

Login Session

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

. —
POST /login HTTP/1.1

<html><form>..</form></html>
cookies: []

username: chaganti
password: swarthmore

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

—
<html><hl>Login Success</hl></html>

GET /account HTTP/1.1
cookies: [session: e82a7b9Z]

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTP connections

Non-persistent HTTP Persistent HTTP
* at most one object sent over TCP multiple objects can be sent over single
connection TCP connection between client, server

— connection then closed

 downloading multiple objects requires
multiple connections

object: image, script, stylesheet, etc.

Slide 36

Non-persistent HT TP

suppose user enters URL: contains references to 10 jpeg images

1a. HTTP client initiates TCP —_))
connection to HTTP server — 1b. HTTP server “accepts
connection, notifying client

2. HTTP client sends HTTP
request message: URL 3. HTTP server:

- receives request

_ _ - forms response message containing
5. HTTP client receives

requested index.html
response: |
: - sends message
- index.html 8

- finds 10 referenced jpeg

objects 4. HTTP server closes TCP

_ connection.
time 6. Steps 1-5 repeated for each of

10 jpeg objects!!

Slide 37

Pseudocode Example

non-persistent HTTP persistent HTTP

for object on web page: connect to server
connect to server for object on web page:
request object request object
receive object receive object

close connection close connection

Slide 38

Round Trip Time

Round Trip Time (RTT):
* time for a small packet to travel from "'
client to server and response to come w B

A RTT E>

e Connection establishment (via TCP)
requires one RTT.

time time

Slide 39

Non-Persistent HT TP Connections can download a website with
several objects in...

m O O w P

One RTT + (File transfer time per object) g Eﬂ
iy

(One RTT + File transfer time) per object

<4
n
n
n
n

RTTD"

—]
|}

Two RTTs
Two RTTs + (File transfer time per object)

(Two RTTS + File transfer time) per object

time time

Slide 40

Persistent Connection

RTT .

request |
file —
RTT < time to

\»
=
. 2}

received

time time

Slide 42

Persistent HT TP

Non-persistent HTTP issues:

requires 2 RTTs per object

OS overhead for each TCP
connection

browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP:

server leaves connection open
after sending response

subsequent HTTP messages
between same client/server
sent over open connection

client sends requests as soon as
it encounters a referenced
object

as little as one RTT for all the
referenced objects

Slide 43

HTTP 1.xvs HTTP 2.0 vs. HTTP 3.0

HTTP/1.1) Main.js
) style.css
) imageT jpg

image2.jpg

HTTP/2 NN NS EEmmmm) incremental

IEEmssssss——) scquential
O) Mixed

https://h3.edm.uhasseit.be

e SPDY: protocol to speed up the web:

Basis for HTTP 2.0
* Request pipelining
 Compress header metadata

Learn more: https://http2.github.io/

HTTP/2 101 Chrome Dev Summit 2015, Robin Marx — “Fixing HTTP/2 and Preparing for HTTP/3 over QUIC

Slide 44

https://http2.github.io/

Concurrency

* Think you’re the only one talking to that server?

Server

Client Client Client

Slide 45

TCP Socket Procedures: for a Web Client

socket()

A

connect()

v

send()

v

recv()

v

close()

socket: create a new communication endpoint

connect: actively attempt to establish a
connection

send: receive some data over a connection

receive: send some data over a connection

close: release the connection

TCP socket procedures for a web server

socket()

!

bind()

v

listen()

v

accept()

v

recv()

v

send()

v

close()

socket: create a new communication endpoint

bind: attach a local address to a socket

listen: announce willingness to accept connections

accept: block caller until a connection request arrives

recv: receive some data over a connection

send: send some data over a connection

close: release the connection

Running a Web Server over TCP

Server
socket() socket()
bind()
listen()

v v
accept() € > connect()
v !
recv() |& send()
v !
send() > recv()
v J
CIOSE() Close()

V

J Client

Lecture 5/6 - Slide 48

Dedicat
ed
Socket
Per

Client :

client_
sock

Running a Web Server

Server

socket(): create a TCP serverSocket

v

bind(): Bind serverSocket to a local address

v

listen(): alert TCP, of your willingness to accept
incoming connections on serverSocket from

_

clients

accept(): accept a new client connection, and
create a dedicated new socket,
connectionSock, for the client.

Client

socket(): create a TCP clientSocket

A

connect(): attempt to establish a
connection with a remote server using

clientSock

recv(): read HTTP request from connectionSock

|

send(): generate an HTTP GET request,
and send it to the server using clientSock

!

| |
send(): retrieve the file, and send the HTTP
response + message on connectionSock

v

I close(): close connectionSocket, and and accept I

new client connections

recv(): receive an HTTP response on
clientSock and save or render the

webpage

close(): close clientSocket at the end
of the transaction

Slide 49

Concurrency

* Think you’re the only one talking to that server?

Server

Client Client Client

Slide 50

Without Concurrency

* Think you’re the only one talking to that server?

recv()

Client

Slide 51

Without Concurrency

* Think you’re the only one talking to that server?

Web Server

Client taking its
time...

Server Process
Blocked!

recv() request

Ready to send, but
Client server still blocked on Client
first client.

If only we could handle these

connections separately...

Slide 52

Multiple processes

Web Server
Server fork()s Server fork()s
Services the
Child process Web Web new client
Server Server
recv()s request
Client Client

Slide 53

Concurrent Web-servers with multiple
threads/processes

Threads (shared memory)

Thread 1

Process 1

OS

PC1
\

SP1

Text

Data

Heap

_

Stack 2

e

Stack 1

PC2

Thread 2

SP2

Message Passing (locally)

Process memory

send (to, buf)

Kernel
/. 1\ .
> >
Process-1 / \ Process-2

receive (from, buf)

Slide 54

Processes/Threads vs. Parent

Spawned Process
* Inherits descriptor table
* Does not share memory
— New memory address space
e Scheduled independently
— Separate execution context
— Can block independently

Spawned Thread
* Shares descriptor table
* Shares memory
— Uses parent’s address space
* Scheduled independently
— Separate execution context
— Can block independently

Slide 55

Processes/Threads vs. Parent
(More details in an OS class...)

Spawned Process Spawned Thread
* Inherits descriptor table e Shares descriptor table
* Does not share memory * Shares memory
— New memory address space — Uses parent’s address space
* Scheduled independently * Scheduled independently
— Separate execution context — Separate execution context
— Can block independently — Can block independently

Often, we don’t need the extra isolation of a separate address space. Faster to skip
creating it and share with parent — threading. Slide 56

Threads & Sharing

* Global variables and static objects are shared
— Stored in the static data segment, accessible by any thread
 Dynamic objects and other heap objects are shared
— Allocated from heap with malloc/free or new/delete

 Local variables are not shared
— Refer to data on the stack

— Each thread has its own stack

— Never pass/share/store a pointer to a local variable on another thread’s
stack

Which benefit of threads most critical in the context of running a
web server?

. Modular code/separation of concerns.
Multiple CPU/core parallelism.
/O overlapping.

. Some other benefit.

Slide 58

Both processes and threads:

Several benefits
— Modularizes code: one piece accepts connections, another services them
— Each can be scheduled on a separate CPU

— Blocking 1/O can be overlapped

Slide 59

Still not maximum efficiency...

* Creating/destroying threads takes time

Both processes and threads

* Requires memory to store thread execution state

e Lots of context switching overhead

v

time

CPU: Time
Single core

Process 1 Process 2 Process N
l 0S | | 0S | 0S
Text
TeXt Data TeXt
Data Heap Data
Heap eee Heap
System Kernel System

Calls

L

Management

Context Switching

Slide 60

Event-based concurrency

* Blocking: synchronous programming
— wait for I/O to complete before proceeding
— control does not return to the program

* Non-blocking: asynchronous programming
— control returns immediately to the program

— perform other tasks while 1/O is being completed.

— notified upon I/O completion

Slide 61

Non-blocking I/O

Event Driven |/O processing!

* Permanently for socket flag O _NONBLOCK
 With O_NONBLOCK set on a socket: No operations will block!

Slide 62

Non-blocking I/O

 With O_NONBLOCK set on a socket
— No operations will block!

* Onrecv(), if socket buffer is empty:
— returns -1

* On send(), if socket buffer is full:
— returns -1

Slide 64

Will this work?

server_socket = socket(), bind(), listen() //non-blocking
connections = []
while (1)
new_connection = accept(server_socket)
if new_connection != -1,
add it to connections
for connection in connections:
recv(connection, ...) // Try to receive
send(connection, ...) // Try to send, if needed

Slide 65

Will this work?

A. Yes, this will work efficiently. D. No, this will still block.
B. Yes but this will execute too slowly.
C. Yes but this will use too many resources.

server_socket = socket(), bind(), listen() //non-blocking
connections = []
while (1)
new_connection = accept(server_socket)
if new_connection != -1,
add it to connections
for connection in connections:
recv(connection, ...) // Try to receive
send(connection, ...) // Try to send, if needed

Non-blocking I/O

 With O_NONBLOCK set on a socket
— No operations will block!

* Onrecv(), if socket buffer is empty:
— returns -1

* On send(), if socket buffer is full:
— returns -1

So... keep checking send and recv until they return something — waste of CPU cycles?

Event-based concurrency: select()

* Create set of file/socket descriptors we want to send and recv
* Tell the O.S to block the process until at least one of those is ready for us to use.
 The OS worries about selecting which one(s).

Slide 67

Event-based concurrency: select()

Rather than checking over and over, let the OS tell us when data

can be read/written

client_sockets[10];
FD_SET(client_sockets) //ask OS to watch all client sockets and select those that are

select(client_sockets) are ready to recv() or send() data

for every client in client_socket:
FD _ISSET(client, read) //return true if this client socket has any data to be received

FD _ISSET(client, write) //return true if this client socket has any data to be sent

v 0OS worries about selecting which sockets (s) are ready.
v" Process blocks if no socket is read to send or receive data.

Slide 68

Event-based concurrency: advantages

* Only one process/thread (or one per core)!

— No time wasted on context switching

— No memory overhead for many processes/threads

Slide 69

