
CS 43: Computer Networks

05: HTTP Concurrency and Performance
September 17, 2024

Slides adapted from Kurose & Ross, Kevin Webb

Reading Quiz

Announcements

• TA for the course: Marcus Wright
– Office Hours: 2 – 4pm in Overflow.

• Regarding missed classes/labs
– three free misses on classes
– lab attendance is mandatory

Slide 9

Midterm Scheduling: Monday Oct 21st 7 – 8.30 PM

Can you make this time?

A. Yes
B. No

Slide 10

Client-Server communication

• Client:
– initiates communication
– must know the address and port of the server
– active socket

• Server:
– passively waits for and responds to clients
– passive socket

Slide 11

What is a socket?

An abstraction through which an application may send and receive
data,

in the same way as a open-file handle or file pointer allows an
application to read and write data to storage.

Slide 12

Sockets
§ process sends/receives messages to/from its socket
§ socket analogous to door

• sending process shoves message out door
• sending process relies on transport infrastructure on other side of door to

deliver message to socket at receiving process
• two sockets involved: one on each side

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Slide 13

send()
• Blocks when socket buffer for sending

is full

• Returns less than requested size when
buffer cannot hold full size

recv()
• Blocks when socket buffer for receiving

is empty

• Returns less than requested size when
buffer has less than full size

Always check the return value!

Blocking Summary

Slide 14

connect()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

send(), recv()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

HTTP/1.0 (1996):
• GET:

– Requests page.

• POST:
– Uploads user response to

a form.

• HEAD:
– asks server to leave

requested object out of
response

HTTP/1.1 (1997 & 1999):
• GET, POST, HEAD
• PUT

– uploads file in entity body
to path specified in URL
field

• DELETE
– deletes file specified in

the URL field
• TRACE, OPTIONS,

CONNECT, PATCH
• Persistent connections

Request Method Types (“verbs”)

Slide 17

Uploading form input

GET (in-URL) method:
• uses GET method
• input is uploaded in URL field of request line:

POST method:
• web page often includes form input
• input is uploaded to server in request entity body

www.somesite.com/animalsearch?monkeys&banana

Slide 18

GET vs. POST

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

Slide 19

GET vs. POST

I. Incrementing a variable
II. Assigning a value to a

variable

III. Allocating Memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

Q: How many of the following operations are idempotent?

GET can be used for idempotent requests
• Idempotence: an operation can be applied multiple times without changing the result (the

final state is the same)

Slide 20

GET vs. POST

I. Incrementing a variable
II. Assigning a value to a

variable

III. Allocating Memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

Q: How many of the following operations are idempotent?

GET can be used for idempotent requests
• Idempotence: an operation can be applied multiple times without changing the

result (the final state is the same)

Slide 21

GET vs. POST

GET can be used for idempotent requests.

• Idempotence: an operation can be applied multiple times without
changing the result (the final state is the same)

Slide 22

GET vs. POST

POST should be when:
• A request changes the state of the server or DB
• Sending a request twice would be harmful: (Some) browsers

warn about sending multiple post requests
• Users are inputting non-ASCII characters
• Input may be very large
– You want to hide how the form works/user input

Slide 23

When might you use GET vs. POST?

GET POST

A. Forum post Search terms, Pizza order

B. Search terms, Pizza order Forum post

C. Search terms Forum post, Pizza order

D. Forum post, Search terms, Pizza Order

E. Forum post, Search terms, Pizza Order

Slide 24

When might you use GET vs. POST?

GET POST

A. Forum post Search terms, Pizza order

B. Search terms, Pizza order Forum post

C. Search terms Forum post, Pizza order

D. Forum post, Search terms, Pizza Order

E. Forum post, Search terms, Pizza Order

Slide 25

State(less)

(XKCD #869, “Server Attention Span”)

Slide 26

HTTP State

Does the HTTP protocol, allow for a server to keep track of every client?

A. Yes, it’s required to
B. No, it would not scale
C. That’s against privacy rules!
D. Something else

Slide 27

State(less)

• Original web: simple document retrieval
• Maintain State? Server is not required to keep state between connections

...often it might want to though

• Authentication: Client is not required to identify itself
– server might refuse to talk otherwise though

Slide 28

User-server state: cookies
What cookies can be used for:
• authorization

• shopping carts
• recommendations

• user session state (Web e-mail)
How to keep “state”:
• protocol endpoints: maintain state at sender/receiver over multiple

transactions

• cookies: http messages carry state

Slide 29

slide 30

What Are Cookies Used For?

• Authentication

– The cookie proves to the website that the client previously
authenticated correctly

• Personalization

– Helps the website recognize the user from a previous visit
• Tracking

– Follow the user from site to site;
– Read about iPads on CNN and see ads on Amazon 😱
– How can an advertiser (A) know what you did on another site

(S)?

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entryusual http response

set-cookie: 1678
ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

Slide 31

User-server state: cookies

Many web sites use cookies

Four components:

1) cookie header line of HTTP response message

2) cookie header line in next HTTP request message

3) cookie file kept on user’s host, managed by user’s browser

4) back-end database at Web site

Slide 32

Cookies and Privacy

Cookies permit sites to learn a lot about you
 supply name and e-mail to sites (and more!)

 third-party cookies (ad networks) follow you across multiple sites.

Slide 33

Cookies and Privacy
Cookies permit sites to learn a lot about you
You could turn them off ...but good luck doing anything on the
internet!

Slide 34

Login Session

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

HTTP connections

Non-persistent HTTP
• at most one object sent over TCP

connection
– connection then closed

• downloading multiple objects requires
multiple connections

Persistent HTTP
• multiple objects can be sent over single

TCP connection between client, server

object: image, script, stylesheet, etc.

Slide 36

Non-persistent HTTP
suppose user enters URL: contains references to 10 jpeg images

1a. HTTP client initiates TCP
connection to HTTP server 1b. HTTP server “accepts”

connection, notifying client
2. HTTP client sends HTTP

request message: URL 3. HTTP server:
 - receives request
 - forms response message containing
 requested index.html
 - sends message

5. HTTP client receives
response:

 - index.html
 - finds 10 referenced jpeg

objects 4. HTTP server closes TCP
connection.

time 6. Steps 1-5 repeated for each of
10 jpeg objects!!

Slide 37

Pseudocode Example

non-persistent HTTP

for object on web page:
 connect to server
 request object
 receive object
 close connection

persistent HTTP

connect to server
for object on web page:
 request object
 receive object
close connection

Slide 38

Round Trip Time

Round Trip Time (RTT):
• time for a small packet to travel from

client to server and response to come
back.

• Connection establishment (via TCP)
requires one RTT.

RTT

time time

Slide 39

Non-Persistent HTTP Connections can download a website with
several objects in…

A. One RTT + (File transfer time per object)

B. (One RTT + File transfer time) per object

C. Two RTTs

D. Two RTTs + (File transfer time per object)

E. (Two RTTS + File transfer time) per object

RTT

time time

Slide 40

file
received

Persistent Connection

time to
transmit
file

RTT

request
file

RTT

time time Slide 42

Persistent HTTP

Non-persistent HTTP issues:
• requires 2 RTTs per object

• OS overhead for each TCP
connection

• browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP:
• server leaves connection open

after sending response
• subsequent HTTP messages

between same client/server
sent over open connection

• client sends requests as soon as
it encounters a referenced
object

• as little as one RTT for all the
referenced objects

Slide 43

HTTP 1.x vs HTTP 2.0 vs. HTTP 3.0

HTTP/2 101 Chrome Dev Summit 2015, Robin Marx – ”Fixing HTTP/2 and Preparing for HTTP/3 over QUIC

Learn more: https://http2.github.io/

• SPDY: protocol to speed up the web:
Basis for HTTP 2.0

• Request pipelining
• Compress header metadata

Slide 44

https://http2.github.io/

• Think you’re the only one talking to that server?

Server

Concurrency

Slide 45

TCP Socket Procedures: for a Web Client

socket: create a new communication endpoint

connect: actively attempt to establish a
connection

send: receive some data over a connection

receive: send some data over a connection

close: release the connection

socket()

connect()

send()

recv()

close()
Slide 46

TCP socket procedures for a web server

Lecture 5/6 - Slide 47

socket()

bind()

listen()

accept()

recv()

send()

close()

socket: create a new communication endpoint

bind: attach a local address to a socket

listen: announce willingness to accept connections

accept: block caller until a connection request arrives

recv: receive some data over a connection

send: send some data over a connection

close: release the connection

Running a Web Server over TCP

Lecture 5/6 - Slide 48

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

Running a Web Server

Slide 49

Dedicat
ed
Socket
Per
Client

client_
sock

• Think you’re the only one talking to that server?

Server

Concurrency

Slide 50

• Think you’re the only one talking to that server?

Web Server
recv()
request

Without Concurrency

Slide 51

• Think you’re the only one talking to that server?

Web Server

recv() request

Client taking its
time…

Server Process
Blocked!

Ready to send, but
server still blocked on

first client.

If only we could handle these
connections separately…

Without Concurrency

Slide 52

Web Server

Server fork()s

Child process
recv()s

Web
Server

Web
Server

Services the
new client
request

Server fork()s

Multiple processes

Slide 53

Concurrent Web-servers with multiple
threads/processes

• Threads (shared memory)

Slide 54

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process memory

• Message Passing (locally)

Thread 1
PC1

SP1

Thread 2

PC2

SP2

Process 1

Text

Data

OS

Heap

Stack 2

Stack 1

Processes/Threads vs. Parent

Spawned Process
• Inherits descriptor table
• Does not share memory
– New memory address space

• Scheduled independently
– Separate execution context
– Can block independently

Spawned Thread
• Shares descriptor table
• Shares memory
– Uses parent’s address space

• Scheduled independently
– Separate execution context
– Can block independently

Slide 55

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process
• Inherits descriptor table
• Does not share memory
– New memory address space

• Scheduled independently
– Separate execution context
– Can block independently

Spawned Thread
• Shares descriptor table
• Shares memory
– Uses parent’s address space

• Scheduled independently
– Separate execution context
– Can block independently

Slide 56

Often, we don’t need the extra isolation of a separate address space. Faster to skip
creating it and share with parent – threading.

• Global variables and static objects are shared
– Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared
– Allocated from heap with malloc/free or new/delete

• Local variables are not shared
– Refer to data on the stack

– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on another thread’s

stack

Threads & Sharing

Slide 57

A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.

Which benefit of threads most critical in the context of running a
web server?

Slide 58

Several benefits
– Modularizes code: one piece accepts connections, another services them
– Each can be scheduled on a separate CPU
– Blocking I/O can be overlapped

Both processes and threads:

Slide 59

Still not maximum efficiency…
• Creating/destroying threads takes time
• Requires memory to store thread execution state

• Lots of context switching overhead

Both processes and threads

Slide 60

P1

P2

P3

time

CPU: Time
Single core

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write
read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Context Switching

• Blocking: synchronous programming

– wait for I/O to complete before proceeding

– control does not return to the program

• Non-blocking: asynchronous programming

– control returns immediately to the program

– perform other tasks while I/O is being completed.

– notified upon I/O completion

Event-based concurrency

Slide 61

Event Driven I/O processing!

• Permanently for socket flag O_NONBLOCK
• With O_NONBLOCK set on a socket: No operations will block!

Non-blocking I/O

Slide 62

• With O_NONBLOCK set on a socket
– No operations will block!

• On recv(), if socket buffer is empty:
– returns -1

• On send(), if socket buffer is full:
– returns -1

Non-blocking I/O

Slide 63

Will this work?

server_socket = socket(), bind(), listen() //non-blocking
connections = []

while (1)

 new_connection = accept(server_socket)
 if new_connection != -1,

 add it to connections

 for connection in connections:
 recv(connection, …) // Try to receive

 send(connection, …) // Try to send, if needed

Slide 64

A. Yes, this will work efficiently.
B. Yes but this will execute too slowly.
C. Yes but this will use too many resources.

D. No, this will still block.

Will this work?

server_socket = socket(), bind(), listen() //non-blocking
connections = []

while (1)

 new_connection = accept(server_socket)
 if new_connection != -1,

 add it to connections

 for connection in connections:
 recv(connection, …) // Try to receive

 send(connection, …) // Try to send, if needed

Slide 65

• With O_NONBLOCK set on a socket
– No operations will block!

• On recv(), if socket buffer is empty:
– returns -1

• On send(), if socket buffer is full:
– returns -1

Non-blocking I/O

Slide 66

So... keep checking send and recv until they return something – waste of CPU cycles?

• Create set of file/socket descriptors we want to send and recv
• Tell the O.S to block the process until at least one of those is ready for us to use.
• The OS worries about selecting which one(s).

Event-based concurrency: select()

Slide 67

Rather than checking over and over, let the OS tell us when data
can be read/written

Event-based concurrency: select()

Slide 68

client_sockets[10];
FD_SET(client_sockets) //ask OS to watch all client sockets and select those that are
select(client_sockets) are ready to recv() or send() data
for every client in client_socket:
 FD_ISSET(client, read) //return true if this client socket has any data to be received
 FD_ISSET(client, write) //return true if this client socket has any data to be sent

ü OS worries about selecting which sockets (s) are ready.
ü Process blocks if no socket is read to send or receive data.

• Only one process/thread (or one per core)!

– No time wasted on context switching

– No memory overhead for many processes/threads

Event-based concurrency: advantages

Slide 69

