
CS 43: Computer Networks

04: Socket Programming
September 12, 2024

Slides adapted from Kurose & Ross, Kevin Webb

Reading Quiz

Announcements

• TA for the course: Marcus Wright
– Office Hours: 2 – 4pm in Overflow.

• Regarding missed classes/labs
– three free misses on classes
– lab attendance is mandatory

Slide 9

Midterm Scheduling: Monday Oct 21st 7 – 8.30 PM

Can you make this time?

A. Yes
B. No

Slide 10

Client-Server communication

• Client:
– initiates communication
– must know the address and port of the server
– active socket

• Server:
– passively waits for and responds to clients
– passive socket

Slide 11

What is a socket?

An abstraction through which an application may send and receive
data,

in the same way as a open-file handle or file pointer allows an
application to read and write data to storage.

Slide 12

Sockets
§ process sends/receives messages to/from its socket
§ socket analogous to door

• sending process shoves message out door
• sending process relies on transport infrastructure on other side of door to

deliver message to socket at receiving process
• two sockets involved: one on each side

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Slide 13

Socket Programming

Adapted from: Donahoo, Michael J., and Kenneth L. Calvert. TCP/IP sockets in C: practical
guide for programmers. Morgan Kaufmann, 2009.

Slide 14

TCP Socket Procedures: Client Client
create a new communication endpoint

actively attempt to establish a connection

send some data over a connection

receive some data over a connection

release the connection

socket()

connect()

send()

recv()

close()
Slide 15

Threads

This is the picture we’ve
been using all along:

A process with a single
thread, which has execution
state (registers) and a stack.

Text

Data

Stack

OS

Heap

Thread 1 PC1

SP1

Threads

Thread 2

PC2

SP2

We can add a thread to the
process. New threads share all
memory (VAS) with other
threads.

New thread gets private
registers, local stack.

Text

Data

OS

Heap

Thread 1 PC1

SP1

Stack 1

Stack 2

Recall: Processes

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process n

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

Inter-process Communication (IPC)

• Processes must
communicate to cooperate

• Must have two mechanisms:

– Data transfer

– Synchronization

• On a single machine:

– Threads (shared memory)

– Message passing

Slide 19

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process n

…

KernelSystem
Calls

write

recv

send

Interprocess Communication (local model)

• Operating system mechanism for inter-process communication
– send (destination, message_buffer)

– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process
memory

Slide 20

Interprocess Communication (non-local)

• Processes must communicate to cooperate

• Must have two mechanisms:
– Data transfer
– Synchronization

• Across a network:
– Message passing

Slide 21

Slide 22

Message Passing (network)

• Same synchronization
• Data transfer
– Copy to/from OS socket buffer
– Extra step across network: hidden from applications

Descriptor Table

OS stores a table, per
process, of descriptors

Kernel
Slide 23

For each Process

Descriptors

Slide 24

Descriptor Table

OS stores a table, per
process, of descriptors

0

1

2…

stdin stdout stderr

For each Process

Kernel

http://www.learnlinux.org.za/courses/b
uild/shell-scripting/ch01s04.html

Slide 25

socket()

• socket() returns a
socket descriptor

• Indexes into table

0

1

2

7

…

stdin stdout stderr

int sock = socket(AF_INET,
 SOCK_STREAM, 0);

7

For each Process

Kernel
Slide 26

socket()

OS stores details of the
socket, connection, and
pointers to buffers

0

1

2

7

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

stdin stdout stderr

int sock = socket(AF_INET,
 SOCK_STREAM, 0);

7

For each Process

Kernel
Slide 27

socket()

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET,
 SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

OS stores details of the
socket, connection, and
pointers to buffers

Buffer:
Temporary
data storage
location

For each Process

Kernel
Slide 28

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

For each Process

Kernel
Slide 29

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Internet

For each Process

Kernel
Slide 30

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

recv(): Move
data from
socket buffer
to process

Internet

For each Process

Kernel
Slide 31

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

send(): Move
data from
process to
socket buffer

Internet

For each Process

Kernel
Slide 32

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Challenge: Your
process does
NOT know what
is stored here!

Free space? Is data here?

For each Process

Kernel
Slide 33

recv()

Kernel

0

1

2

7

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we issued a connect() here…)

int recv_val = recv(sock, r_buf, 200, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: …, Local port: …
Send buffer , Receive buffer

Is data here?

r_buf (size 200)

For each Process

Slide 34

What should we do if the receive socket buffer is empty? If it has 100 bytes?

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Socket buffer
(receive) Empty

100 bytes

r_buf (size 200)

For each Process

Kernel

Two Scenarios:

Slide 35

What should we do if the receive socket buffer is empty? If it has 100 bytes?

Empty 100 Bytes

A Block Block

B Block Copy 100 bytes

C Copy 0 bytes Block

D Copy 0 bytes Copy 100 bytes

E Something else

Socket buffer
(receive) Empty

Two Scenarios:

100 bytes

r_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel
Slide 36

What should we do if the send socket buffer is full? If it has 100 bytes?

Socket buffer
(send) Full

s_buf (size 200)

100 bytes

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

Slide 37

What should we do if the send socket buffer is full? If it has 100 bytes?

Full 100 Bytes

A Return 0 Copy 100 bytes

B Block Copy 100 bytes

C Return 0 Block

D Block Block

E Something else

Socket buffer
(send) Full

100 bytes

Slide 38

s_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

Blocking Implications

recv()
• Do not assume that you will recv() all of the bytes that you ask for.
• Do not assume that you are done receiving.
• Always receive in a loop!*

send()
• Do not assume that you will send() all of the data you ask the kernel to

copy.
• Keep track of where you are in the data you want to send.
• Always send in a loop!*

* Unless you’re dealing with a single byte, which is rare.

Slide 39

ALWAYS check send()/recv() return values!

When recv() returns a non-zero number of bytes always call recv() again
until:
– the server closes the socket,
– or you’ve received all the bytes you expect.

Slide 40

ALWAYS check send()/recv() return values!

When recv() returns a non-zero number of bytes always call recv() again
until:
– In the case of your web client: keep receiving until the server closes the

socket.

Slide 41

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we want to receive data
from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Slide 42

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we want to receive data
from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

Slide 43

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we want to receive data from
a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

// Receive remaining bytes from offset of 50

Slide 44

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we want to receive data
from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

// Receive remaining bytes from offset of 50
recv(sock, data + 50, 200 – 50, 0)
Data received = ?

Slide 45

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we want to receive data
from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

Repeat until server closes the socket. (return value = 0)

// Receive remaining bytes from offset of 50
recv(sock, data + 50, 200 – 50, 0)
Data received = ?

Slide 46

send()
• Blocks when socket buffer for sending

is full

• Returns less than requested size when
buffer cannot hold full size

recv()
• Blocks when socket buffer for receiving

is empty

• Returns less than requested size when
buffer has less than full size

Always check the return value!

Blocking Summary

Slide 47

Create a TCP socket: socket()

int socket(int domain, int type, int protocol)

int sock = socket(AF_INET, SOCK_STREAM, 0);

• domain: communication domain of the socket: generic interface.

• type of socket: reliable vs. best-effort

• end-to-end protocol: TCP for a stream socket -

– 0: default E2E for specified protocol family and type.

int socket(int domain, int type, int protocol)

int sock = socket(AF_INET, SOCK_STREAM, 0);

/* AF_INET: Communicate with IPv4 Address Family (AF),

SOCK_STREAM: Stream-based protocol

int sock: returns an integer-valued socket descriptor or handle

*/

if(sock < 0) { // If socket() fails, it returns -1

perror("socket");

exit(1);

}

Create a TCP socket: socket()

Close a socket: close()

int close(int socket)
if (close(sock)) {

perror("close");
exit(1);

}
/* int socket: int socket descriptor is passed to close()*/
• Close operation similar to closing a file.
• initiate actions to shut down communication
• deallocate resources associated with the socket
• cannot send(), recv() after you close the socket.

connect()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

connect()

• Before you can communicate, a connection must be established.
• Client Initiates, Server waits.
• Once connect() returns, socket is connected and we can proceed with

send(), recv()

int connect(int socket,
 const struct sockaddr *foreign Address, socklen_t addressLength)

connect()

int connect(int socket,
 const struct sockaddr *foreign Address, socklen_t
addressLength)
struct sockaddr_in addr;
int res = connect(sock, (struct sockaddr*)&addr, sizeof(addr));

/* int socket: socket descriptor
 foreignAddress: pointer to sockaddr_in containing Internet address, port of server.

 addressLength: length of address structure
*/

send(), recv()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

send(), recv()

Socket is connected when:
• client calls connect()
• connected socket is returned by accept() on server

ssize_t send(int socket, const void *msg, msgLength, int flags)

ssize_t recv (int socket, void *rcvBuffer, size_t bufferLength, int flags)

/* int socket: socket descriptor
 return: # bytes sent/received or -1 for failure.

send()

send():
• by default send: blocks until data is sent
ssize_t send(int socket, const void *msg, msgLength, int flags)
/* int socket: socket descriptor
 send(): msg: sequence of bytes to be sent
 send(): mesgLength: # bytes to send

send(), recv()

recv():
ssize_t recv (int socket, void *rcvBuffer, size_t bufferLength, int flags)
int recv_count = recv(sock, buf, 255, 0);

/* int socket: socket descriptor
 void *rcvBuffer: generally a char array
 size_t bufferLength: length of buffer: max # bytes that can be received at once.
 flags: setting flag to zero specifies default behavior.

 Place all send() and recv() calls in a loop, until you are left with no

more bytes to send or receive. One call to send()/recv(), irrespective
of the buffer does not necessarily mean all your data will be received
at once.

HTTP/1.0 (1996):
• GET:

– Requests page.

• POST:
– Uploads user response to

a form.

• HEAD:
– asks server to leave

requested object out of
response

HTTP/1.1 (1997 & 1999):
• GET, POST, HEAD
• PUT

– uploads file in entity body
to path specified in URL
field

• DELETE
– deletes file specified in

the URL field
• TRACE, OPTIONS,

CONNECT, PATCH
• Persistent connections

Request Method Types (“verbs”)

Slide 58

Uploading form input

GET (in-URL) method:
• uses GET method
• input is uploaded in URL field of request line:

POST method:
• web page often includes form input
• input is uploaded to server in request entity body

www.somesite.com/animalsearch?monkeys&banana

Slide 59

GET vs. POST

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

Slide 60

GET vs. POST

I. Incrementing a variable
II. Assigning a value to a

variable

III. Allocating Memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

Q: How many of the following operations are idempotent?

GET can be used for idempotent requests
• Idempotence: an operation can be applied multiple times without changing the result (the

final state is the same)

Slide 61

GET vs. POST

GET can be used for idempotent requests.

• Idempotence: an operation can be applied multiple times without changing the
result (the final state is the same)

Slide 63

GET vs. POST

POST should be when:
• A request changes the state of the server or DB
• Sending a request twice would be harmful: (Some) browsers

warn about sending multiple post requests
• Users are inputting non-ASCII characters
• Input may be very large
– You want to hide how the form works/user input

Slide 64

When might you use GET vs. POST?

GET POST

A. Forum post Search terms, Pizza order

B. Search terms, Pizza order Forum post

C. Search terms Forum post, Pizza order

D. Forum post, Search terms, Pizza Order

E. Forum post, Search terms, Pizza Order

Slide 65

State(less)

(XKCD #869, “Server Attention Span”)

Slide 67

HTTP State

Does the HTTP protocol, allow for a server to keep track of every client?

A. Yes, it’s required to
B. No, it would not scale
C. That’s against privacy rules!
D. Something else

Slide 68

State(less)

• Original web: simple document retrieval
• Maintain State? Server is not required to keep state between connections

...often it might want to though

• Authentication: Client is not required to identify itself
– server might refuse to talk otherwise though

Slide 69

User-server state: cookies
What cookies can be used for:
• authorization

• shopping carts
• recommendations

• user session state (Web e-mail)
How to keep “state”:
• protocol endpoints: maintain state at sender/receiver over multiple

transactions

• cookies: http messages carry state

Slide 70

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entryusual http response

set-cookie: 1678
ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

Slide 71

User-server state: cookies

Many web sites use cookies

Four components:

1) cookie header line of HTTP response message

2) cookie header line in next HTTP request message

3) cookie file kept on user’s host, managed by user’s browser

4) back-end database at Web site

Slide 72

Cookies and Privacy

Cookies permit sites to learn a lot about you
 supply name and e-mail to sites (and more!)

 third-party cookies (ad networks) follow you across multiple sites.

Slide 73

Cookies and Privacy
Cookies permit sites to learn a lot about you
You could turn them off ...but good luck doing anything on the
internet!

Slide 74

HTTP connections

Non-persistent HTTP
• at most one object sent

over TCP connection
– connection then closed

• downloading multiple
objects requires multiple
connections

Persistent HTTP
• multiple objects can be

sent over single TCP
connection between
client, server

object: image, script, stylesheet, etc.

Slide 75

Non-persistent HTTP
suppose user enters URL: contains references to 10 jpeg images

1a. HTTP client initiates TCP
connection to HTTP server 1b. HTTP server “accepts” connection,

notifying client

2. HTTP client sends HTTP
request message: URL 3. HTTP server:

 - receives request
 - forms response message containing
 requested index.html
 - sends message5. HTTP client receives response:

 - index.html
 - finds 10 referenced jpeg objects 4. HTTP server closes TCP connection.

time 6. Steps 1-5 repeated for each of 10
jpeg objects

Slide 76

Pseudocode Example

non-persistent HTTP

for object on web page:
 connect to server
 request object
 receive object
 close connection

persistent HTTP

connect to server
for object on web page:
 request object
 receive object
close connection

Slide 77

Round Trip Time

Round Trip Time (RTT):
• time for a small packet to

travel from client to server
and response to come back.

• Connection establishment
(via TCP) requires one RTT.

RTT

time time

Slide 78

HTTP 1.x vs HTTP 2.0

Courtesy: HTTP/2 101 Chrome Dev Summit 2015

Learn more: https://http2.github.io/

• SPDY: protocol to speed up the
web: Basis for HTTP 2.0

• Request pipelining
• Compress header metadata

Slide 79

Non-Persistent HTTP Connections can download
a website with several objects in…

A. One RTT + (File transfer time per object)

B. (One RTT + File transfer time) per object

C. Two RTTs

D. Two RTTs + (File transfer time per object)

E. (Two RTTS + File transfer time) per object

RTT

time time

Slide 80

Non-persistent HTTP: response time

Round Trip Time (RTT): time for a small packet to
travel from client to server and back

HTTP response time:
• 1-RTT to initiate TCP connection
• 1-RTT for HTTP request + first few bytes of HTTP

response to return

• file transmission time
• non-persistent HTTP response time =

 2-RTT+ file transmission time
 For each object

RTT

time to
transmit
file

initiate TCP
connection

request
file

RTT

file
received

time time

Client Server

Slide 81

file
received

Persistent Connection

time to
transmit
file

RTT

request
file

RTT

time time Slide 82

Persistent HTTP

Non-persistent HTTP issues:
• requires 2 RTTs per object

• OS overhead for each TCP
connection

• browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP:
• server leaves connection open

after sending response
• subsequent HTTP messages

between same client/server
sent over open connection

• client sends requests as soon as
it encounters a referenced
object

• as little as one RTT for all the
referenced objects

Slide 83

• Think you’re the only one talking to that server?

Server

Concurrency

Slide 84

• Think you’re the only one talking to that server?

Web Server
recv()
request

Without Concurrency

Slide 85

• Think you’re the only one talking to that server?

Web Server

recv() request

Client taking its
time…

Server Process
Blocked!

Ready to send, but
server still blocked on

first client.

If only we could handle these
connections separately…

Without Concurrency

Slide 86

Web Server

Server fork()s

Child process
recv()s

Web
Server

Web
Server

Services the
new client
request

Server fork()s

Multiple processes

Slide 87

Concurrent Web-servers with multiple
threads/processes

• Threads (shared memory)

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process memory

• Message Passing (locally)

Thread 1 PC1

SP1

Thread 2

PC2

SP2

Process 1

Text

Data

OS

Heap

Stack 2
Stack 1 OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

Two Separate Processes

Slide 88

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process

• Inherits descriptor table
• Does not share memory
– New memory address

space
• Scheduled independently
– Separate execution

context
– Can block independently

Spawned Thread
• Shares descriptor table
• Shares memory
– Uses parent’s address

space
• Scheduled independently
– Separate execution

context
– Can block independently

Slide 89

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process

• Inherits descriptor table
• Does not share memory
– New memory address

space
• Scheduled independently

Spawned Thread
• Shares descriptor table
• Shares memory
– Uses parent’s address

space
• Scheduled independently

Often, we don’t need the extra isolation of a separate address
space. Faster to skip creating it and share with parent –

threading.

Slide 90

A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.

Which benefit is most critical?

Slide 91

Several benefits
– Modularizes code: one piece accepts connections, another services them
– Each can be scheduled on a separate CPU
– Blocking I/O can be overlapped

Both processes and threads:

Slide 92

Still not maximum efficiency…
• Creating/destroying threads takes time
• Requires memory to store thread execution state

• Lots of context switching overhead

Both processes and threads

P1
P2
P3

time

CPU: Time
Single core

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls write

read
fork

System
Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Context Switching
Slide 93

