
CS 43: Computer Networks

03: HTTP & Sockets
September 10, 2024

Slides adapted from Kurose & Ross, Kevin Webb

Reading Quiz

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 9

Application Layer
(HTTP, FTP, SMTP, Tiktok)

• Does whatever an application does!

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 10

Transport Layer (TCP, UDP)

• Provides
– Ordering
– Error checking
– Delivery guarantee
– Congestion control
– Flow control

• Or doesn’t!

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 11

Application Layer Data
becomes the payload for
the transport layer

Network Layer (IP)

• Routers: choose paths through network

12

Source Destination

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 12

Transport layer data +
header becomes
payload for the
network layer

Link Layer (Ethernet, WiFi, Cable)

• Who’s turn is it to send right now?
• Break message into frames
• Media access: can it send the frame now?

• Send frame, handle “collisions”

Receiver

13

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 13

Network layer data + header
becomes payload for the link
layer

Physical layer – move actual bits!
(Cat 5, Coax, Air, Fiber Optics)

802.11b Wireless
Access Point

Ethernet switch/router

To campus
backbone

2.4Ghz Radio
DS/FH Radio
 (1-11Mbps)

Cat5 Cable (4 wires)
100Base TX Ethernet
100Mbps

62.5/125um 850nm MMF
 1000BaseSX Ethernet
1000Mbps

Slide 14

Layering and encapsulation

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport: reliability

Network: routing

Link: framing,
error detection

Physical

Layer

Slide 15

• explicit structure allows identification, relationship of complex system’s
pieces
– layered reference model for discussion
– reusable component design

• modularization eases maintenance
– change of implementation of layer’s service transparent to rest of

system,
– e.g., change in postal route doesn’t effect delivery of lette

Layering: Separation of Functions

Slide 16

Abstraction!

• Hides the complex details of a process

• Use abstract representation of relevant properties make reasoning
simpler

• Ex: Your knowledge of postal system:
– Letters with addresses go in, come out other side

Slide 17

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 18

Data Link

Physical

Applications

The Hourglass Model

“Thin Waist”

FTP HTTP SSHVoIP

TCP UDP

IP

NET1 NET2 NETn…

Transport

Internet Protocol Suite

Slide 19

Putting this all together

• ROUGHLY, what happens when I click on a Web page from Swarthmore?

www.google.com

?
My computer

Internet

Slide 20

Application Layer: Web request (HTTP)

• Turn click into HTTP request

GET http://www.google.com/ HTTP/1.1
Host: www.google.com
…

Slide 21

http://www.yahoo.com/

Application Layer: Name resolution (DNS)

• Where is www.google.com?

What’s the address for www.google.com

My computer
(132.239.9.64)

Oh, you can find it at 66.102.7.104

Local DNS server
(132.239.51.18)

Slide 22

Transport Layer: TCP

• Break message into packets (TCP segments)
• Should be delivered reliably & in-order

GET http://www.google.com HTTP/1.1
Host: www.google.com
…

GET htt1p://www.2google.c3

Slide 23

http://www.yahoo.com/

Network Layer: Global Network Addressing

• Address each packet so it can traverse network and arrive at host

My computer
(132.239.9.64)

www.google.com
(66.102.7.104)

GET htt166.102.7.104 132.239.9.64

Destination Source Data

Slide 24

Network Layer: (IP) At Each Router

• Where do I send this to get it closer to Google?

• Which is the best route to take?

Slide 25

Link & Physical Layers (Ethernet)

• Forward to the next node!

• Share the physical medium.

• Detect errors.

Slide 26

Message Encapsulation

• Higher layer within lower layer

• Each layer has different concerns, provides abstract
services to those above

Application

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 27

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 28

TCP/IP Protocol Stack

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Slide 29

TCP/IP Protocol Stack

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Application Layer

Transport Layer

Link Layer

Network Layer

Slide 30

Worksheet

Slide 31

THE NETWORK PROTOCOL STACK AND PROTOCOL LAYERING

Creating a network app

write programs that:
• run on (different) end systems
• communicate over network
• e.g., web server s/w

communicates with browser
software

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Slide 32

Creating a network app

no need to write software for network-core
devices!

• network-core devices do not run user
applications

• applications on end systems
– rapid app development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Slide 33

HTTP: HyperText Transfer Protocol

• client: browser that uses
HTTP to request, and
receive Web objects.

• server: Web server that
uses HTTP to respond with
requested object.

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

Client/Server model

Slide 34

What IS A Web Browser?

Slide 35

HTTP and the Web

• web page consists of objects
• object can be: an HTML file (index.html)

demo.cs.swarthmore.edu/index.html

Slide 36

Web objects

• web page consists of objects
• object can be: JPEG image

Slide 37

Web objects

• web page consists of objects
• object can be: audio file

Courtesy: New York Times Slide 38

Web objects

• web page consists of objects
• object can be: video, java applets, etc.

Slide 39

HTTP and the Web

• a web page consists of base HTML-file which
includes several referenced objects

• each object is addressable by a URL, e.g.,

demo.cs.swarthmore.edu/example/pic.html

host name path name
Slide 40

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

host name path name

Slide 41

HTTP Overview

2. Browser establishes connection with server
using the Sockets API.

Calls socket() // create a socket
Looks up “some.host.name.tld” (DNS: getaddrinfo)
Calls connect() // connect to remote server
Ready to call send() // Can now send HTTP requests
 Slide 42

HTTP Overview

3. Browser requests data the user asked for

GET /directory/name/file.ext HTTP/1.0

Host: some.host.name.tld

[other optional fields, for example:]

User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)

Accept-language: en

Required
fields

Slide 43

HTTP Overview

4. Server responds with the requested data.

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
[Blank line]
(Data data data data…)

Slide 44

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

Slide 45

HTTP Overview

1. User types in a URL.
2. Browser establishes connection with server.
3. Browser requests the corresponding data.
4. Server responds with the requested data.
5. Browser renders the response, fetches other objects, and closes the

connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Slide 46

HTTP Overview (Lab 1)

1. User types in a URL.
2. Browser establishes connection with server.
3. Browser requests the corresponding data.
4. Server responds with the requested data.
5. Browser renders the response, fetches other objects, Save the file and

close the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Slide 47

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80 (default HTTP server port)
at example server.

Anything typed is sent to server on port 80 at
demo.cs.swarthmore.edu

telnet demo.cs.swarthmore.edu 80

Slide 48

Trying out HTTP (client side) for yourself

2. Type in a GET HTTP request:

GET / HTTP/1.1
Host: demo.cs.swarthmore.edu
(blank line)

(Hit carriage
return twice) This
is a minimal, but complete,
GET request to the HTTP
server.

3. Look at response message sent by HTTP server!
Slide 49

Example
$ telnet demo.cs.swarthmore.edu 80
Trying 130.58.68.26...

Connected to demo.cs.swarthmore.edu.

Escape character is '^]'.

GET / HTTP/1.1

Host: demo.cs.swarthmore.edu

HTTP/1.1 200 OK

Vary: Accept-Encoding

Content-Type: text/html

Accept-Ranges: bytes
ETag: "316912886"

Last-Modified: Wed, 04 Jan 2017 17:47:31 GMT

Content-Length: 1062

Date: Wed, 05 Sep 2018 17:27:34 GMT

Server: lighttpd/1.4.35

Response
headers

Slide 50

Example
$ telnet demo.cs.swarthmore.edu 80
Trying 130.58.68.26...
Connected to demo.cs.swarthmore.edu.
Escape character is '^]'.
GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

<html><head><title>Demo Server</title></head>
<body>
.....
</body>
</html>

Response
headers

Response
body
(This is what you
should be saving in
lab 1.)

Slide 51

HTTP request message

• two types of HTTP messages: request, response
• HTTP request message: ASCII (human-readable format)

request line
(GET, POST,
HEAD, etc. commands)

variable #
header
 lines

two carriage return,
line feed characters

GET /index.html HTTP/1.0\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Slide 52

HTTP response message status line
(protocol
status code
status phrase)

variable #
header
 lines

data, e.g., requested HTML file: may not be text!

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n

data data data data data ...

two carriage return,
line feed characters

Slide 53

HTTP response status codes

200 OK
• Request succeeded, requested object later in this msg
301 Moved Permanently
• Requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

– Request msg not understood by server
403 Forbidden

– You don’t have permission to read the object
404 Not Found

– Requested document not found on this server
505 HTTP Version Not Supported

Status code appears in first line of server-to-client response message.

Slide 54

HTTP response status codes

420 Enhance Your Calm (twitter)
– Slow down, you’re being rate limited

451 Unavailable for Legal Reasons
– Censorship?

418 I’m a Teapot
– Response from a teapot requested to brew a beverage

(announced Apr 1)

Slide 55

Status code appears in first line of server-to-client response message.
Many others! Search “list of HTTP status codes”

Client-Server communication

• Client:
– initiates communication
– must know the address and port of the server
– active socket

• Server:
– passively waits for and responds to clients
– passive socket

Slide 56

Worksheet

Slide 57

demo.cs.swarthmore.edu

Worksheet

Slide 58

demo.cs.swarthmore.edu

What is a socket?

An abstraction through which an application may send
and receive data,

in the same way as a open-file handle allows an
application to read and write data to storage.

Slide 59

Sockets
§ process sends/receives messages to/from its socket
§ socket analogous to door

• sending process shoves message out door
• sending process relies on transport infrastructure on other side of door to

deliver message to socket at receiving process
• two sockets involved: one on each side

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket Programming

Lecture 5/6 - Slide 61

Adapted from: Donahoo, Michael J., and Kenneth L. Calvert. TCP/IP sockets in C: practical
guide for programmers. Morgan Kaufmann, 2009.

TCP Socket Procedures: Client Client
create a new communication endpoint

actively attempt to establish a connection

send some data over a connection

receive some data over a connection

release the connection

socket()

connect()

send()

recv()

close()
Slide 62

Recall Inter-process Communication (IPC)

• Processes must communicate to cooperate

• Must have two mechanisms:

– Data transfer

– Synchronization

• On a single machine:

– Threads (shared memory)

– Message passing

Slide 63

Message Passing (local)

• Operating system mechanism for IPC
– send (destination, message_buffer)

– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process
memory

Slide 64

Interprocess Communication
(non-local)

• Processes must communicate to cooperate

• Must have two mechanisms:
– Data transfer
– Synchronization

• Across a network:
– Threads (shared memory) NOT AN OPTION!
– Message passing

Slide 65

Slide 66

Message Passing (network)

• Same synchronization
• Data transfer

– Copy to/from OS socket buffer
– Extra step across network: hidden from applications

Descriptor Table

OS stores a table, per
process, of descriptors

Kernel
Slide 67

For each Process

Descriptors

Slide 68

Descriptor Table

OS stores a table, per
process, of descriptors

0

1

2…

Slide 69

stdin stdout stderr

For each Process

Kernel

http://www.learnlinux.org.za/courses/b
uild/shell-scripting/ch01s04.html

socket()

• socket() returns a
socket descriptor

• Indexes into table

0

1

2

7

…

Slide 70

stdin stdout stderr

int sock = socket(AF_INET,
 SOCK_STREAM, 0);

7

For each Process

Kernel

socket()

OS stores details of the
socket, connection, and
pointers to buffers

0

1

2

7

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

Slide 71

stdin stdout stderr

int sock = socket(AF_INET,
 SOCK_STREAM, 0);

7

For each Process

Kernel

socket()

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET,
 SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

OS stores details of the
socket, connection, and
pointers to buffers

Slide 72

Buffer:
Temporary
data storage
location

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Slide 73

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Internet Slide 74

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

recv(): Move
data from
socket buffer
to process

Internet Slide 75

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

send(): Move
data from
process to
socket buffer

Internet Slide 76

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Challenge: Your
process does
NOT know what
is stored here!

Free space? Is data here?

For each Process

Kernel
Slide 77

recv()

Kernel

0

1

2

7

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we issued a connect() here…)

int recv_val = recv(sock, r_buf, 200, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: …, Local port: …
Send buffer , Receive buffer

Is data here?

Lecture 7 - Slide 78

r_buf (size 200)

For each Process

What should we do if the receive socket buffer is
empty? If it has 100 bytes?

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Socket buffer
(receive) Empty

100 bytes

r_buf (size 200)

For each Process

Kernel

Two Scenarios:

Slide 79

What should we do if the receive socket buffer is
empty? If it has 100 bytes?

Empty 100 Bytes

A Block Block

B Block Copy 100 bytes

C Copy 0 bytes Block

D Copy 0 bytes Copy 100 bytes

E Something else

Socket buffer
(receive) Empty

Two Scenarios:

100 bytes

r_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel
Slide 80

What should we do if the send socket buffer is full?
If it has 100 bytes?

Socket buffer
(send) Full

s_buf (size 200)

100 bytes

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

Slide 81

What should we do if the send socket buffer is full?
If it has 100 bytes?

Full 100 Bytes

A Return 0 Copy 100 bytes

B Block Copy 100 bytes

C Return 0 Block

D Block Block

E Something else

Socket buffer
(send) Full

100 bytes

Slide 82

s_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

Blocking Implications

recv()
• Do not assume that you will recv() all of the bytes

that you ask for.
• Do not assume that you are done receiving.
• Always receive in a loop!*

send()
• Do not assume that you will send() all of the data you

ask the kernel to copy.
• Keep track of where you are in the data you want to

send.
• Always send in a loop!*

* Unless you’re dealing with a single byte, which is rare.
Slide 83

ALWAYS check send()/recv() return values!

When recv() returns a non-zero number of bytes always
call recv() again until:
– the server closes the socket,
– or you’ve received all the bytes you expect.

Slide 84

ALWAYS check send()/recv() return values!

When recv() returns a non-zero number of bytes always
call recv() again until:
– In the case of your web client: keep receiving until the

server closes the socket.

Slide 85

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Slide 86

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

// Receive remaining bytes from offset of 50

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

// Receive remaining bytes from offset of 50
recv(sock, data + 50, 200 – 50, 0)
Data received = ?

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

Repeat until server closes the socket. (return value = 0)

// Receive remaining bytes from offset of 50
recv(sock, data + 50, 200 – 50, 0)
Data received = ?

send()
• Blocks when socket buffer for sending

is full

• Returns less than requested size when
buffer cannot hold full size

recv()
• Blocks when socket buffer for receiving

is empty

• Returns less than requested size when
buffer has less than full size

Always check the return value!

Blocking Summary

Create a TCP socket: socket()

int socket(int domain, int type, int protocol)

int sock = socket(AF_INET, SOCK_STREAM, 0);

• domain: communication domain of the socket: generic interface.

• type of socket: reliable vs. best-effort

• end-to-end protocol: TCP for a stream socket -

– 0: default E2E for specified protocol family and type.

int socket(int domain, int type, int protocol)

int sock = socket(AF_INET, SOCK_STREAM, 0);

/* AF_INET: Communicate with IPv4 Address Family (AF),

SOCK_STREAM: Stream-based protocol

int sock: returns an integer-valued socket descriptor or handle

*/

if(sock < 0) { // If socket() fails, it returns -1

perror("socket");

exit(1);

}

Create a TCP socket: socket()

Close a socket: close()

int close(int socket)
if (close(sock)) {

perror("close");
exit(1);

}
/* int socket: int socket descriptor is passed to close()*/
• Close operation similar to closing a file.
• initiate actions to shut down communication
• deallocate resources associated with the socket
• cannot send(), recv() after you close the socket.

connect()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

connect()

• Before you can communicate, a connection must be established.
• Client Initiates, Server waits.
• Once connect() returns, socket is connected and we can proceed with

send(), recv()

int connect(int socket,
 const struct sockaddr *foreign Address, socklen_t addressLength)

connect()

int connect(int socket,
 const struct sockaddr *foreign Address, socklen_t
addressLength)
struct sockaddr_in addr;
int res = connect(sock, (struct sockaddr*)&addr, sizeof(addr));

/* int socket: socket descriptor
 foreignAddress: pointer to sockaddr_in containing Internet address, port of server.

 addressLength: length of address structure
*/

send(), recv()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

send(), recv()

Socket is connected when:
• client calls connect()
• connected socket is returned by accept() on server

ssize_t send(int socket, const void *msg, msgLength, int flags)

ssize_t recv (int socket, void *rcvBuffer, size_t bufferLength, int flags)

/* int socket: socket descriptor
 return: # bytes sent/received or -1 for failure.

send()

send():
• by default send: blocks until data is sent
ssize_t send(int socket, const void *msg, msgLength, int flags)
/* int socket: socket descriptor
 send(): msg: sequence of bytes to be sent
 send(): mesgLength: # bytes to send

send(), recv()

recv():
ssize_t recv (int socket, void *rcvBuffer, size_t bufferLength, int flags)
int recv_count = recv(sock, buf, 255, 0);

/* int socket: socket descriptor
 void *rcvBuffer: generally a char array
 size_t bufferLength: length of buffer: max # bytes that can be received at once.
 flags: setting flag to zero specifies default behavior.

 Place all send() and recv() calls in a loop, until you are left with no

more bytes to send or receive. One call to send()/recv(), irrespective
of the buffer does not necessarily mean all your data will be received
at once.

