
CS 43: Computer Networks

05:Network Services and Distributed
Systems

September 22, 2020

Last class

• Inter-process communication using message passing
• How send and recv buffers work
• Concurrency

Slide 2

Today

• Server side TCP Sockets
• Application-layer communication paradigms:
– Client-Server
– Peer-to-peer architecture

• Distributed network applications: Sources of
complexity

Slide 3

Where we are

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 4

What is a socket?

An abstraction through which an application may send
and receive data,

in the same way as a open-file handle allows an
application to read and write data to storage.

Slide 5

Sockets

• Process sends/receives messages to/from its socket
• Application has a few options, operating system handles the details

– Choice of transport protocol (TCP, etc.)

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Slide 6

App

TCP

IP

Ethernet
interface

App

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Addressing Sockets

• IP address identifies device interface
• How do we identify different

applications running on the same
device?

Slide 7

App

TCP

IP

Ethernet
interface

App

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Addressing Sockets

• IP address identifies device interface
• Need another identifier: port

– 16-bit, unsigned integer value
– Differentiates sockets

• TCP Socket identified by:
– (source IP, source port, dest IP, dest port)

Slide 8

§ TCP socket identified by 4-
tuple:
• source IP address
• source port number
• dest IP address
• dest port number

§ Receiver uses all four
values to direct segment to
appropriate socket

§ server host may support
many simultaneous TCP
sockets:
• each socket identified by

its own 4-tuple
§ web servers have different

sockets for each connecting
client
• non-persistent HTTP will

have different socket for
each request

Connection-oriented: example

Slide 10

Connection-oriented: HTTP example

transport

application

physical
link

P4

network

P6P5

Slide 11

A socket is uniquely identified by (source IP, source port, dest IP, dest port)

Connection-oriented: HTTP example

transport

application

physical
link

network

P3
transport

application

physical
link

P4

transport

application

physical
link

network

P2

source IP,port: B,80
dest IP,port: A,9000

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5000
dest IP,port: B,80

source IP,port: C,5050
dest IP,port: B,80

source IP,port: A,9000
dest IP, port: B,80

server: IP
address B

Slide 12

source port: 9000

P2 source
port:
5000

P3 source
port:
5050

A socket is uniquely identified by (source IP, source port, dest IP, dest port)

Connection-oriented: example

transport

application

physical
link

network

P3
transport

application

physical
link

transport

application

physical
link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Slide 13

Multiplexing/Demultiplexing

Multiplexing:
– gather data packets from multiple sockets,
– encapsulate each packet with transport header inforation
– pass the packet to the network layer to send it over a shared

communication channel.
Slide 14

transport

application

physical

link

P4

network

P6P5

common IP: same end host

different applications, and
sockets

Multiplexing/Demultiplexing

De-Multiplexing:
– examine transport layer header of data packet sent from the network layer
– identify receiving socket
– deliver data to the correct socket for each application

Slide 15

transport

application

physical

link

P4

network

P6P5

common IP: same end host

different applications, and
sockets

Application Design: Client-Server architecture

• Client:
– initiates communication
– must know the address and port of the server
– active socket

• Server:
– passively waits for and responds to clients
– passive socket

Slide 16

TCP Socket Procedures: Client Client

create a new communication endpoint

actively attempt to establish a connection

send some data over a connection

receive some data over a connection

release the connection

socket()

connect()

send()

recv()

close()
Slide 17

TCP socket procedures for a web server

socket()

bind()

listen()

accept()

recv()

send()

close()

socket: create a new communication endpoint

bind: attach a local address to a socket

listen: announce willingness to accept connections

accept: block caller until a connection request arrives

recv: receive some data over a connection

send: send some data over a connection

close: release the connection
Slide 18

Running a Web Server over TCP

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

Slide 19

Running a Web Server

Dedicat
ed
Socket
Per
Client

client_
sock

Slide 20

Distributed Network Applications

Slide 21

• Cooperating processes in a computer network
• Varying degrees of integration
– Loose: email, web browsing
– Medium: chat, Skype, remote execution, remote file

systems
– Tight: process migration, distributed file systems

What is a distributed application?

Computer

Network

`processes

messages

Computer

Computer

Computer

Computer

Slide 22

Distributed Systems: Advantages

• Speed: parallelism, less contention
• Reliability: redundancy, fault tolerance (NSPF)
• Scalability: incremental growth, economy of scale
• Geographic distribution: low latency, reliability

Network

`processes

messages

Computer

Computer

Computer

Computer

Computer

Slide 23

Distributed Systems: Disadvantages

• Fundamental problems of decentralized control
– State uncertainty: no shared memory or clock
– Action uncertainty: mutually conflicting decisions

• Distributed algorithms are complex

Network

`processes

messages

Computer

Computer

Computer

Computer

Slide 24

On a single system…

• You have a number of components
– CPU
– Memory
– Disk
– Power supply

• If any of these go wrong, you’re (usually) toast.

Slide 32

On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned

Slide 33

On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned

Introduces major complexity! Slide 34

Desirable Properties

• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity

Slide 39

The CAP Theorem
• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity

• Choose Two
• “CAP prohibits only a tiny part of the design space: perfect

availability and consistency in the presence of partitions,
which are rare.”*

* Brewer, Eric. "CAP twelve years later: How the" rules" have changed." Computer 45.2
(2012): 23-29. Slide 40

Event Ordering

• It’s very useful if all nodes can agree on the order of
events in a distributed system

• For example: Two users trying to update a shared file
across two replicas

Slide 41

If two events occur (digitally or in the “real
world”), can we always tell which happened
first?

A. Yes

B. No

Slide 42

Event Ordering

• It’s very useful if all nodes can agree on the order of
events in a distributed system

• For example: Two users trying to update a shared file
across two replicas

• “Time, Clocks, and the Ordering of Events in a
Distributed System” by Leslie Lamport (1978)
– Establishes causal orderings
– Cited > 8000 times

Slide 44

Causal Consistency Example

• Suppose we have the following scenario:
– Sally posts to Facebook, “Bill is missing!”
– (Bill is at a friend’s house, sees message, calls mom)
– Sally posts new message, “False alarm, he’s fine”
– Sally’s friend James posts, “What a relief!”

Slide 45

Causal Consistency Example

• Suppose we have the following scenario:
– Sally posts to Facebook, “Bill is missing!”
– (Billy is at a friend’s house, sees message, calls mom)
– Sally posts new message, “False alarm, he’s fine”
– Sally’s friend James posts, “What a relief!

• NOT causally consistent:
– Third user, Henry, sees only:
– Sally posts to Facebook, “Bill is missing!”
– Sally’s friend James posts, “What a relief!”

Slide 46

Causal Consistency Example
• Suppose we have the following scenario:

1. Sally posts to Facebook, “Bill is missing!” (Bill is at a
friend’s house, sees message, calls mom)

2. Sally posts new message, “False alarm, he’s fine”
3. Sally’s friend James posts, “What a relief!”

• Causally consistent version:
– Because James had seen Sally’s second post (which

caused his response), Henry must also see it prior to
seeing James’s.

Slide 47

Summary

• Client-server vs. peer-to-peer models

• Distributed systems are hard to build!
– Partial failures
– Ordering of events

• Take CS 87 for more details!

Slide 48

