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Last class

• Inter-process communication using message passing
• How send and recv buffers work 
• Concurrency
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Today

• Server side TCP Sockets
• Application-layer communication paradigms:
– Client-Server
– Peer-to-peer architecture

• Distributed network applications: Sources of 
complexity
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Where we are

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium 
(copper, the air, fiber)
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What is a socket?

An abstraction through which an application may send 
and receive data,

in the same way as a open-file handle allows an 
application to read and write data to storage. 
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Sockets

• Process sends/receives messages to/from its socket
• Application has a few options, operating system handles the details

– Choice of transport protocol (TCP, etc.)
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Addressing Sockets

• IP address identifies device interface
• How do we identify different 

applications running on the same 
device?
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Addressing Sockets

• IP address identifies device interface
• Need another identifier: port

– 16-bit, unsigned integer value
– Differentiates sockets

• TCP Socket identified by:
– (source IP, source port, dest IP,  dest port)
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§ TCP socket identified by 4-
tuple: 
• source IP address
• source port number
• dest IP address
• dest port number

§ Receiver uses all four 
values to direct segment to 
appropriate socket

§ server host may support 
many simultaneous TCP 
sockets:
• each socket identified by 

its own 4-tuple
§ web servers have different 

sockets for each connecting 
client
• non-persistent HTTP will 

have different socket for 
each request

Connection-oriented: example
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Connection-oriented: HTTP example
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A socket is uniquely identified by (source IP, source port, dest IP, dest port)



Connection-oriented: HTTP example
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Connection-oriented: example
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Multiplexing/Demultiplexing

Multiplexing: 
– gather data packets from multiple sockets, 
– encapsulate each packet with transport header inforation
– pass the packet to the network layer to send it over a shared 

communication channel. 
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Multiplexing/Demultiplexing

De-Multiplexing: 
– examine transport layer header of data packet sent from the network layer
– identify receiving socket
– deliver data to the correct socket for each application
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Application Design: Client-Server architecture

• Client:
– initiates communication
– must know the address and port of the server
– active socket

• Server:
– passively waits for and responds to clients
– passive socket
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TCP Socket Procedures: Client Client

create a new communication endpoint

actively attempt to establish a connection

send some data over a connection

receive some data over a connection

release the connection

socket()

connect()

send()

recv()

close()
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TCP socket procedures for a web server

socket()

bind()

listen()

accept()

recv()

send()

close()

socket: create a new communication endpoint

bind: attach a local address to a socket

listen: announce willingness to accept connections

accept: block caller until a connection request arrives

recv: receive some data over a connection

send: send some data over a connection

close: release the connection
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Running a Web Server over TCP
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Running a Web Server
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Distributed Network Applications
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• Cooperating processes in a computer network
• Varying degrees of integration
– Loose: email, web browsing
– Medium: chat, Skype, remote execution, remote file 

systems
– Tight: process migration, distributed file systems

What is a distributed application?
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Distributed Systems: Advantages

• Speed: parallelism, less contention
• Reliability: redundancy, fault tolerance (NSPF)
• Scalability: incremental growth, economy of scale
• Geographic distribution: low latency, reliability
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Distributed Systems: Disadvantages

• Fundamental problems of decentralized control
– State uncertainty: no shared memory or clock
– Action uncertainty: mutually conflicting decisions

• Distributed algorithms are complex
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On a single system…

• You have a number of components
– CPU
– Memory
– Disk
– Power supply

• If any of these go wrong, you’re (usually) toast.
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On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned
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On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned

Introduces major complexity! Slide 34



Desirable Properties

• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity
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The CAP Theorem
• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity

• Choose Two
• “CAP prohibits only a tiny part of the design space: perfect 

availability and consistency in the presence of partitions, 
which are rare.”*

* Brewer, Eric. "CAP twelve years later: How the" rules" have changed." Computer 45.2 
(2012): 23-29. Slide 40



Event Ordering

• It’s very useful if all nodes can agree on the order of 
events in a distributed system

• For example: Two users trying to update a shared file 
across two replicas
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If two events occur (digitally or in the “real 
world”), can we always tell which happened 
first?

A. Yes

B. No
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Event Ordering

• It’s very useful if all nodes can agree on the order of 
events in a distributed system

• For example: Two users trying to update a shared file 
across two replicas

• “Time, Clocks, and the Ordering of Events in a 
Distributed System” by Leslie Lamport (1978)
– Establishes causal orderings
– Cited > 8000 times
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Causal Consistency Example

• Suppose we have the following scenario:
– Sally posts to Facebook, “Bill is missing!”
– (Bill is at a friend’s house, sees message, calls mom)
– Sally posts new message, “False alarm, he’s fine”
– Sally’s friend James posts, “What a relief!”
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Causal Consistency Example

• Suppose we have the following scenario:
– Sally posts to Facebook, “Bill is missing!”
– (Billy is at a friend’s house, sees message, calls mom)
– Sally posts new message, “False alarm, he’s fine”
– Sally’s friend James posts, “What a relief!

• NOT causally consistent:
– Third user, Henry, sees only:
– Sally posts to Facebook, “Bill is missing!”
– Sally’s friend James posts, “What a relief!”
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Causal Consistency Example
• Suppose we have the following scenario:

1. Sally posts to Facebook, “Bill is missing!” (Bill is at a 
friend’s house, sees message, calls mom)

2. Sally posts new message, “False alarm, he’s fine”
3. Sally’s friend James posts, “What a relief!”

• Causally consistent version:
– Because James had seen Sally’s second post (which 

caused his response), Henry must also see it prior to 
seeing James’s.
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Summary

• Client-server vs. peer-to-peer models

• Distributed systems are hard to build!
– Partial failures
– Ordering of events

• Take CS 87 for more details!
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