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Reading Quiz



Today

• Accessing things via an offset

– Arrays, Structs, Unions

– Connect accessing them in C with what we know about assembly

• How complex structures are stored in memory

– Multi-dimensional arrays & Structs



Using Dynamically Allocated 2D Arrays as Parameters

Stack 

main: 

Heap 

dy2D: 

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

addr in heap2d_arr

addr in heapmatrix

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

   int i, j;

   for(i=0; i < rows; i++) {

        for(j=0; j< cols; j++) {

            matrix[i*cols + j] = i*j;

    }

   }

}

int main() {

   long int *2d_arr = malloc(3 * 4 * sizeof(long int));

   dy2D(2d_arr, 3, 4);

}



Dynamically Allocated 2D Array: Array of Pointers

• One malloc for an array of rows:    an array of int*

• N mallocs for each row's column values:  arrays of int

– variable type is int**

– stores address of rows array: an array of int*

int ** 2d_array;

// allocate a row of int pointers 

2d_array = malloc (sizeof(int *) *M);

// for each int pointer in the row, 
// allocate an array

for(i=0; i < M; i++) {
  2d_array[i] = malloc(sizeof(int)*N);
}

Stack 

main: 
addr in heap2d_array

Heap 
0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                M
-1

0
   1

    2
      …

                M
-1

0
   1

    2
      …

                M
-1



Using 2D Array (Array of Pointers) As Parameters

Stack 
main: addr in heap2d_array

Heap 

parameter gets base address of rows array of int* 

• its type is int** : a pointer to int*: (with buckets of int)

• pass row and column dimension values

• Can use [i][j] to index into a specific location in 2D array.

void init2D(int **arr, int rows, int cols){

int i, j;

    for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

arr[i][j] = 0;

}

}

}

addr in heaparr

init2D: 

0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                N
-1

0
   1

    2
      …

                N
-1

0
   1

    2
      …

               N
-1



Using 2D Array (Array of Pointers): How about free-ing this memory?

Stack 
main: addr in heap2d_array

Heap 
void free(int **arr){

//TODO: decide which order to free memory

Option A: free the int ** array first

Option B: free the innner arrays (each int* array 

first)

}

addr in heaparr

init2D: 

0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                N
-1

0
   1

    2
      …

                N
-1

0
   1

    2
      …

               N
-1

parameter gets base address of rows array of int* 

• its type is int** -> a pointer to an array of int*-> 

• each  int* -> a pointer to an array of ints



Two Ways for 2D Arrays

• We'll use BOTH methods in future labs:

– Lab 7: 
• column-major, large chunk of memory that we treat as a 2D array,

• use arr[index] where index = i * ROWSIZE + j to deference values

– Lab 8/9: 
• array of integer pointers, 

• can use arr[N][M] to dereference values



Structs

• Multiple values (fields) stored together

– Defines a new type in C's type system

• Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.



Structs

Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting 
address of a struct…

The id field is always at 
an offset of 8 forward 
from the start.



Structs

Struct fields accessible as a base + displacement
In assembly: mov reg_value, 8(reg_base)

Where:
• reg_value is a register holding the value to store (say, 12)
• reg_base is a register holding the base address of the struct

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;
s.id = 12;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting 
address of a struct…

The id field is always at 
an offset of 8 forward 
from the start.



Structs

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:

0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:

0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:

0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …



Why do we want to align data on multiples of the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.



Data Alignment: Why?

• Simplify hardware

– e.g., only read ints from multiples of 4

– Don’t need to build wiring to access 4-byte chunks at any arbitrary 
location in hardware

• Inefficient to load/store single value across alignment boundary (1 
vs. 2 loads)

• Simplify OS:

– Prevents data from spanning virtual pages

– Atomicity issues with load/store across boundary



Structs

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;



Structs

struct student{                

char name[11];

short age;

int id;

};



How much space do we need to store one of these structures?  Why?

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

struct student{                

char name[11];

short age;

int id;

};



Structs

Memory …   

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating structs with 
malloc()!

struct student{                

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 20 bytes!



Alternative Layout

Same fields, declared in 
a different order.

struct student{                

char name[11];

short age;

int id;

};



Alternative Layout
Memory …   

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a 
day-to-day basis.  Don’t go out and 
rearrange all your struct declarations.

struct student{                

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 17 bytes



Aside: Network Headers

• In networks, we attach metadata to packets

– Things like destination address, port #, etc.

• Common for these to be a specific size/format

– e.g., the first 20 bytes must be laid out like …

• Naïvely declaring a struct might introduce padding, violate format.



Cool, so we can get rid of this struct padding by being smart about 

declarations?

A. Yes (why?)

B. No (why not?)



Cool, so we can get rid of this padding by being smart about 

declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct can’t be 
eliminated.

struct T1 {     struct T2 {

    char c1;      int x;

    char c2;          char c1;

    int  x;              char c2;

};        };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x



“External” Padding

Array of Structs: Field values in each bucket must be properly 
aligned:

   struct T2 arr[3];

Buckets must be on a 8-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 16



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student s;

s.id = 406432;

s.age = 20;

strcpy(s.name, “Alice”);

Struct is declared on 
the stack.
(NOT a pointer)



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

Option 1: Works but ugly

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Option 2: Use struct pointer dereference!



Memory alignment applies elsewhere too!

int x;         vs.     double y;

char ch[5];            int x;

short s;               short s;

double y;              char ch[5];

In nearly all cases, you shouldn't stress about this.  The compiler will figure 
out where to put things.

Exceptions: networking, OS



Structs and Arrays

• Use Structs & Arrays to build complex data types

• Very important to think about type!

from the outside in:  (e.g.)  a[3].age
• type of a is a pointer to an array of student

• can use [i] notation to access a bucket of this array

• type of a[3] is a student struct

• can use . to access a field in struct

• type of a[3].age is an int

• Remember how different types are passed
• semantics of passing an array vs. a struct

• it is all pass by value, but what value is differs by type



Transition

• First half of course: hardware focus

– How the hardware is constructed

– How the hardware works

– How to interact with hardware / ISA

• Up next: performance and software systems

– Memory performance

– Operating systems

– Standard libraries (strings, threads, etc.)



Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect  on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming



Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect  on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming



Suppose you’re designing a new computer architecture.  Which 

type of memory would you use?  Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed, moderate cost 

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

trade-off between capacity and speed 



Classifying Memory

• Broadly, two types of memory:

1. Primary storage: CPU instructions can access any location at any time 
(assuming OS permission)

2. Secondary storage: CPU can’t access this directly



Random Access Memory (RAM)

• Any location can be accessed directly by CPU

– Volatile Storage: lose power → lose contents

• Static RAM (SRAM)

– Latch-Based Memory (e.g. RS latch), 1 bit per latch

– Faster and more expensive than DRAM
• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)

– Capacitor-Based Memory, 1 bit per capacitor
• “Main memory”: Not part of CPU



Memory Technologies

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB
(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll cover 
caches (SRAM) soon.  Let’s look at main memory (DRAM) now.



DRAM

Memory

Chips

Bus Interface

Dynamic Random Access Memory (DRAM)

Capacitor based: 

– cheaper and slower than SRAM

– capacitors are leaky (lose charge over time)

– Dynamic: value needs to be refreshed (every 10-
100ms)
                   

Example: DIMM 

(Dual In-line Memory Module):



Connecting CPU and Memory

• Components are connected by a bus:

• A bus is a collection of parallel wires that carry address, data, 
and control signals.

• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

CPU Cache



How A Memory Read Works

(1) CPU places address A on the memory bus.

Load operation:  mov (Address A), %rax

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

A

Hey memory, 
please locate 
the value at 
address A



How A Memory Read Works

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

(2) Main Memory reads address A from  memory, fetches value at 
that address and puts it on the bus

Sending the 
value back to 
the CPU

Value



Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

(3) CPU reads value from the bus, and copies it into register rax. 

a copy also goes into the on-chip cache memory

How A Memory Read Works



1. CPU writes A to bus, memory reads it 
2. CPU writes value to bus, memory reads it 
3. Memory stores value at address A

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

value, A

How a Memory Write Works

Hey memory, 
store value at 
address A  



Secondary Storage

• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on 
secondary storage

– No way to specify a disk location in an instruction

– Operating System moves data to/from memory



Secondary Storage
Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

I/O 
Controller

USB 
Controller

IDE 
Controller

SATA 
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

path is much longer



What’s Inside A Disk Drive?
Spindle

Arm

Actuator

Platters

Controller Electronics

(includes processor & memory) 
bus

connector

Image from  Seagate Technology

R/W head

Data Encoded as 
points of 
magnetism on 
Platter surfaces

Device Driver (part of OS code) 

interacts with Controller to R/W to disk



Reading and Writing to Disk

disk surface 
spins at a fixed
rotational rate
~7200 rotations/min

disk arm sweeps across 
surface to position 
read/write head over a 
specific  track.

Data blocks located in some Sector of some Track on some Surface
1. Disk Arm moves to correct track (seek time)
2. Wait for sector spins under R/W head (rotational latency)
3. As sector spins under head, data are Read or Written

(transfer time)
sector



Memory Technology

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk

– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

Down the hall

Across campus

To Seattle

1 ms == 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB                            (to Cleveland / Indianapolis)



The Memory Hierarchy

Larger  
Slower
Cheaper 
per byte

Local secondary storage (disk)
~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs 

can
directly 
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access



Where does accessing the network belong?

Larger  
Slower
Cheaper 
per byte

Local secondary storage (disk)
~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs 

can
directly 
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: Here

B: Here C: Somewhere else



The Memory Hierarchy

Local secondary storage (disk)

Larger  
Slower
Cheaper 
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs 

can
directly 
access

slower
      than local
           disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network



Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk, at 
reasonable cost.



Motivating Story / Analogy

• You work at a library

• You have a huge library

– 10-15 minutes to find a book and bring to customer

– Customers don’t like waiting…

• You have a small office in the front with shelves, you choose what goes 
on shelves

– < 30 seconds to find a book on the front shelf



The Library Hierarchy

Large Warehouse

On 
Shelf 

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie

Goal: strategically put 
movies on office shelf to 
reduce trips to warehouse.



Quick vote: Which book should we place on the shelf ?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. Brave New World

D. Pride and Prejudice

E. There’s no way for us to know.



Problem: Prediction

• We can’t know the future…

• So… are we out of luck?
What might we look at to help us decide?

• The past is often a pretty good predictor…



Repeat Customer: Bob

• Has borrowed “The Hobbit” ten times in the last two weeks.

• You talk to him:

– He is looking forward to his tenth Renaissance Fair meet-up.



Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. The Hobbit

D. Pride and Prejudice

E. There is no way for us to knpw



Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. The Hobbit

D. Pride and Prejudice

E. There is no way for us to know



Repeat Customer: Alice

• Alice read “Dune” a month ago. 

• You talk to her:

– She’s really likes science fiction! 

• Over the next few weeks she borrowed: 

– Dune Messiah (Dune-II), Children of Dune (Dune-III) 



Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. God Emperor of Dune (Dune-IV)

D. Pride and Prejudice

E. There is no way for us to know



Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. God Emperor of Dune (Dune-IV)

D. Pride and Prejudice

E. There is no way for us to know



Critical Concept: Locality

• Locality: we tend to repeatedly access recently accessed items, or those 
that are nearby.

• Temporal locality: An item that has been accessed recently is likely to be 
accessed again soon. (Bob)

• Spatial locality: We’re likely to access an item that’s nearby others we 
just accessed. (Alice)



In the following code, how many examples are there of temporal / spatial 

locality? Where are they?

A. 1 temporal, 1 spatial
B. 1 temporal, 2 spatial
C. 2 temporal, 1 spatial
D. 2 temporal, 2 spatial
E. Some other number



In the following code, how many examples are there of temporal / spatial 

locality? Where are they?



Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

Faster than memory.  (On-chip hardware)

Holds a subset of memory.

Faster than disk.

Holds a subset of disk.

Faster than cache.

Holds a VERY small amount (subset of cache).



Caches, Locality

• A cache is a smaller, faster memory, that holds a subset of a larger 
(slower) memory

• We take advantage of locality to keep data in cache as often as we can!

• When accessing memory, we check cache to see if it has the data we’re 
looking for.



Cache

• In general: a storage location that holds a subset of a larger memory, 
faster to access

• CPU cache: an SRAM on-chip storage location that holds a subset of 
DRAM main memory (10-50x faster to access)

• Goal: choose the right subset, based on past locality, to achieve our 
abstraction

When we say “cache”, assume we’re referring to CPU 
cache from now on, unless we say otherwise.



Cache Basics

• CPU real estate dedicated to cache

• Usually two (or more) levels:

– L1: smallest, fastest

– L2: larger, slower

• Same rules apply:

– L1 subset of L2

ALURegs

L2 Cache

L1

Main Memory

Memory       Bus

CPU



Cache Basics

• CPU real estate dedicated to cache

• Usually two levels:

– L1: smallest, fastest

– L2: larger, slower

• We’ll assume one cache
(same principles)

ALURegs

Cache

Main Memory

Memory       Bus

CPU

Cache is a subset of main memory.
(Not to scale, memory much bigger!)



Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

ALURegs

Cache

Main Memory

Memory       Bus

CPU



Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

ALURegs

Cache

Main Memory

Memory       Bus

CPU

In cache?

Request data



Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

• Data in cache (hit):

– Good, send to register

– Cancel/ignore memory

ALURegs

Cache

Main Memory

Memory       Bus

CPU

In cache?



Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

• Data in cache (hit):

– Good, send to register

– Cancel/ignore memory

• Data not in cache (miss):

1. Load cache from memory
(might need to evict data)

2. Send to register

ALURegs

Cache

Main Memory

Memory       Bus

CPU

In cache?

1.
(~100-200 cycles)

2.



Cache Basics: Write to memory

• Assume data already cached

– Otherwise, bring it in like read

1. Update cached copy.

2. Update memory?

ALURegs

Cache

Main Memory

Memory       Bus

CPU

Data



When should we copy the written data from cache to memory?  

Why?

A. Immediately update the data in memory when we update the cache.

B. Update the data in memory when we remove ("evict") the data from 
the cache.

C. Update the data in memory if the data is needed elsewhere (e.g., 
another core).

D. Update the data in memory at some other time. (When?)



When should we copy the written data from cache to memory?  

Why?

A. Write-through: Immediately update the data in memory when we update 
the cache.  

B. Write-back: Update the data in memory when we remove ("evict") the 
data from the cache.

C. Update the data in memory if the data is needed elsewhere (e.g., 
another core).

D. Update the data in memory at some other time. (When?)



Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• Write-though: write to memory immediately
+ simpler

- accesses memory more often (slower)

• Write-back: only write to memory on eviction

+ potentially reduces memory accesses (faster)

– complex (cache inconsistent with memory)

Sells better.
Servers/Desktops/Laptops



Cache Coherence

• Keeping multiple cores’ 
memory consistentALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU



Cache Coherence

• Keeping multiple cores’ memory 
consistent

• If one core updates data
– Copy data directly from one cache to 

the other.

– Avoid (slower) memory

• Lots of HW complexity here.  We 
might discuss towards end of 
semester.

ALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU



Recall

• A cache is a smaller, faster memory, that holds a subset of a larger 
(slower) memory

• We take advantage of locality to keep data in cache as often as we can!

• When accessing memory, we check cache to see if it has the data we’re 
looking for.



Why we miss…

• Compulsory (cold-start) miss:

– First time we use data, load it into cache.

• Capacity miss:

– Cache is too small to store all the data we’re using.

• Conflict miss:

– To bring in new data to the cache, we evicted other data that we’re still 
using.



Cache Design

• Lot’s of characteristics to consider:

– Where should data be stored in the cache?

Main Memory Main Memory

Cache Cache



Cache Design

• Lot’s of characteristics to consider:

– Where should data be stored in the cache?

– What size data chunks should we store? (block size)

Main Memory Main Memory

Cache Cache



Cache Design

• Lot’s of characteristics to consider:

– Where should data be stored in the cache?

– What size data chunks should we store? (block size)

• Goals:

– Maximize hit rate

– Maximize (temporal & spatial) locality benefits

– Reduce cost/complexity of design



Suppose the CPU asks for data, it’s not in cache.

We need to move in into cache from memory.  Where in the cache 

should it be allowed to go?

A. In exactly one place.

B. In a few places.

C. In most places, but not all.

D. Anywhere in the cache.

ALURegs

Cache

Main Memory

Memory       Bus

CPU

? ?

?



A. Direct-Mapped: In exactly one place

• Every location in memory is directly mapped to one place 
in the cache.  

• Easy to find data.

B. Set-Associative: In a few places. 

• A memory location can be mapped to (2, 4, 8) locations in 
the cache.  

• Middle ground.

C. In most places, but not all.

D. “Fully associative”: Anywhere in the cache. 

• No restrictions on where memory can be placed in the cache.  

• Fewer conflict misses, more searching.



A larger block size (caching memory in larger chunks) is likely to 

exhibit…

A. Better temporal locality

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)



A larger block size (caching memory in larger chunks) is likely to 

exhibit…

A. Better temporal locality (does not change how freq. we 
use a block)

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

Slide 97

hard to make a 
determination  
- don’t know what the 

prog, is doing
- harmful if prog. does 

not exhibit good spatial 
locality



Block Size Implications

• Small blocks

– Room for more blocks

– Fewer conflict misses

• Large blocks

– Fewer trips to memory

– Longer transfer time

– Fewer cold-start misses

Main Memory Main Memory

Cache Cache



Trade-offs

• There is no single best design for all purposes!

• Common systems question: which point in the design space should we 
choose?

• Given a particular scenario:

– Analyze needs

– Choose design that fits the bill



Real CPUs

• Goals: general purpose processing

– balance needs of many use cases

– middle of the road: jack of all trades, master of none

• Some associativity, medium size blocks:

– 8-way associative (memory in one of eight places)

– 16 or 32 or 64-byte blocks



What should we use to determine whether or not data is in the cache?

A. The memory address of the data.

B. The value of the data.

C. The size of the data.

D. Some other aspect of the data.



What should we use to determine whether or not data is in the cache?

A. The memory address of the data.

– Memory address is how we identify the data.

B. The value of the data.
– If we knew this, we wouldn’t be looking for it!

C. The size of the data.

D. Some other aspect of the data.



Recall: Memory Reads

CPU places address A on the memory bus.

Load operation:  movl (A), %eax

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

A
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Hey memory, please 
locate the value at 
address A: same 
address gets sent to 
the cache!



Recall: Memory Reads

Memory retrieves value and sends it across bus.

CPU reads value from the bus, and copies it  into register 
%eax, a copy also goes into the on-chip cache memory.

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

Value

Sending the 
value back to 
the CPU



Memory Address Tells Us…

• Is the block containing the byte(s) you want already in the cache?

• If not, where should we put that block?

– Do we need to kick out (“evict”) another block?

• Which byte(s) within the block do you want?



Memory Addresses

• Like everything else: series of bits (32 or 64)

• Keep in mind:

– N bits gives us 2N unique values.

• 64-bit address:

10110001 01110010 11010100 01010110 10110001 01110010 11010100 
01010110

Divide into regions, each with distinct meaning.



Address Division

• First section: Tag

– Of all the addresses that map to this location, which one is here?

– Number of bits for this section is any bits left over after index and offset.

• Second section: Index

– Which location(s) in the cache should we check for the data with this address?

– Number of bits for this section depends on the number of cache locations.

• Third section: Offset

– If we find a block of bytes in the cache (on a hit) which byte offset within the 
block do we actually want?

– Number of bits for this section depends on the block size – must be able to 
uniquely identify every byte in the block.



A. In exactly one place.  (“Direct-mapped”)

– Every location in memory is directly mapped to one 
place in the cache.  Easy to find data.

B. In a few places.  (“Set associative”)

– A memory location can be mapped to (2, 4, 8) 
locations in the cache.  Middle ground.

A. Anywhere in the cache. (“Fully associative”)

– No restrictions on where memory can be placed in the 
cache.  Fewer conflict misses, more searching.



Direct-Mapped

• One place data can be.

• Example: let’s assume some parameters:

– 1024 cache locations (every block mapped to one)

– Block size of 8 bytes



Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

1024 cache locations (every block mapped to one)
Block size of 8 bytes



Cache meta-data

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

Valid bit: is the entry valid?
If set: data is correct, use it if we 
‘hit’ in cache
If not set: ignore ‘hits’, the data is 
garbage

Dirty bit: has the data been written?
Used by write-back caches
If set, need to update memory 
before eviction



Address division: Direct-Mapped

• Identify byte in block

– How many bits do we need to 
represent each byte uniquely?

• Identify which row (line)

– How many bits do we need to 
represent each line uniquely?

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

A. Block 8 bits Row 1024 bits    B. Block 3 bits Row 10 bits  
C. Block 10 bits Row 10 bits      D. Block 32 bits Row 32 bits



Address division: Direct-Mapped

• Identify byte in block

– How many bits?  3

• Identify which row (line)

– How many bits?  10

• Tag:

– 64 - 13: 51 bits

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023



Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)



Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Address division:

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)



Direct-Mapped

Address division:
Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

In parallel, check:
Tag:
Does the cache hold the data we’re 
looking for, or some other block?

Valid bit:
If entry is not valid, don’t trust garbage in 
that line (row).

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

If tag doesn’t match,
or line is invalid, it’s a miss!



Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

0 1 2 3 4 5 6 7



Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 4

0 1 2 3 4 5 6 7



V D Tag Data

…

=

Tag Index Byte offset

0: miss
1: hit

Select Byte(s)

Data
Input: Memory Address



Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes

– 4 bits in address for the index

– 4 bits in address for byte offset

– Remaining bits (8): tag



Direct-Mapped Example

• Let’s say we access memory at 
address:

– 0110101100110100

• Step 1:

– Partition address into tag, index, 
offset

Line V D Tag Data   
(16 Bytes)

0

1

2

3

4

5

…

15



Direct-Mapped Example

• Let’s say we access memory at 
address:

– 01101011  0011  0100

• Step 1:

– Partition address into tag, index, 
offset

Line V D Tag Data   
(16 Bytes)

0

1

2

3

4

5

…

15



Direct-Mapped Example

• Let’s say we access memory at 
address:

– 01101011  0011  0100

• Step 2:

– Use index to find line (row)

– 0011 -> 3

Line V D Tag Data   
(16 Bytes)

0

1

2

3

4

5

…

15



Line V D Tag Data 
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at 
address:

– 01101011  0011  0100

• Step 2:

– Use index to find line (row)

– 0011 -> 3



Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at 
address:

– 01101011  0011  0100

• Note:

– ANY address with 0011 (3) as the 
middle four index bits will map to 
this cache line.

– e.g. 11111111 0011 0000

So, which data is here?

Data from address
0000000000110000
to
1111111100111111 can map to 
the same cache line!

Use tag to store high-order bits.  
Let’s us determine which data is 
here!  (many addresses map here)



Line V D Tag Data (16 Bytes)

0

1

2

3 01101011

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at 
address:

– 01101011  0011  0100

• Step 3:

– Check the tag

– Is it 01101011 (hit)?

– Something else (miss)?

– (Must also ensure valid)



Eviction

• If we don’t find what we’re looking for (miss), we need to bring in the data 
from memory.

• Make room by kicking something out.
– If line to be evicted is dirty, write it to memory first.

• Another important systems distinction:
– Mechanism: An ability or feature of the system.

What you can do.

– Policy: Governs the decisions making for using the mechanism.  What you should 
do.



Eviction

• For direct-mapped cache:

– Mechanism: overwrite bits in cache line, updating

• Valid bit

• Tag

• Data

– Policy: not many options for direct-mapped

• Overwrite at the only location it could be!



Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Find line:

Tag doesn’t match, bring in from memory.

If dirty, write back first!

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020



Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to 
read main memory.



Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 3941 92

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to 
read main memory.

2. Copy data from memory.
Update tag.



Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable 
straddle multiple cache blocks?

0 1 2 3 4 5 6 7



Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable 
straddle multiple cache blocks?

No, recall mem. alignment!
0 1 2 3 4 5 6 7



Suppose we had 8-bit addresses, a cache with 8 lines, and a block 

size of 4 bytes.

• How many bits would we use for:

– Tag?

– Index?

– Offset?



Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes

– 4 bits in address for the index

– 4 bits in address for byte offset

– Remaining bits (8): tag



Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data 
(4 Bytes)

0 1 0 111 17

1 1 0 011 9

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following memory 

operations?



Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data 
(4 Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following memory 

operations?



Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data 
(4 Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

No change necessary.

How would the cache change if we performed the following memory 

operations?



Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 
Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 0 101 15

3 1 1 001 8

4
1 0 

1
011 4   7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following memory 

operations?



Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 
Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2
0 
1

0 101   101 15   12

3 1 1 001 8

4
1 0 

1
011 4   7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Note: tag happened to 
match, but line was invalid.

How would the cache change if we performed the following memory 

operations?



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 
Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2
0 
1

0 101   101 15   12

3
1 1 

1
001   011 8   2

4
1 0 

1
011 4   7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

1. Write dirty line to memory.
2. Load new value, set it to 2, 

mark it dirty (write).
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