
CS 31: Introduction to Computer Systems

16 Storage and Locality
03-25-2025

Reading Quiz

Today

• Accessing things via an offset

– Arrays, Structs, Unions

– Connect accessing them in C with what we know about assembly

• How complex structures are stored in memory

– Multi-dimensional arrays & Structs

Using Dynamically Allocated 2D Arrays as Parameters

Stack

main:

Heap

dy2D:

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

addr in heap2d_arr

addr in heapmatrix

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

 int i, j;

 for(i=0; i < rows; i++) {

 for(j=0; j< cols; j++) {

 matrix[i*cols + j] = i*j;

 }

 }

}

int main() {

 long int *2d_arr = malloc(3 * 4 * sizeof(long int));

 dy2D(2d_arr, 3, 4);

}

Dynamically Allocated 2D Array: Array of Pointers

• One malloc for an array of rows: an array of int*

• N mallocs for each row's column values: arrays of int

– variable type is int**

– stores address of rows array: an array of int*

int ** 2d_array;

// allocate a row of int pointers

2d_array = malloc (sizeof(int *) *M);

// for each int pointer in the row,
// allocate an array

for(i=0; i < M; i++) {
 2d_array[i] = malloc(sizeof(int)*N);
}

Stack

main:
addr in heap2d_array

Heap
0 1 … M-1

addr in
heap

addr in
heap

…
addr in
heap

0
 1

 2
 …

 M
-1

0
 1

 2
 …

 M
-1

0
 1

 2
 …

 M
-1

Using 2D Array (Array of Pointers) As Parameters

Stack
main: addr in heap2d_array

Heap

parameter gets base address of rows array of int*

• its type is int** : a pointer to int*: (with buckets of int)

• pass row and column dimension values

• Can use [i][j] to index into a specific location in 2D array.

void init2D(int **arr, int rows, int cols){

int i, j;

 for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

arr[i][j] = 0;

}

}

}

addr in heaparr

init2D:

0 1 … M-1

addr in
heap

addr in
heap

…
addr in
heap

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

Using 2D Array (Array of Pointers): How about free-ing this memory?

Stack
main: addr in heap2d_array

Heap
void free(int **arr){

//TODO: decide which order to free memory

Option A: free the int ** array first

Option B: free the innner arrays (each int* array

first)

}

addr in heaparr

init2D:

0 1 … M-1

addr in
heap

addr in
heap

…
addr in
heap

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

parameter gets base address of rows array of int*

• its type is int** -> a pointer to an array of int*->

• each int* -> a pointer to an array of ints

Two Ways for 2D Arrays

• We'll use BOTH methods in future labs:

– Lab 7:
• column-major, large chunk of memory that we treat as a 2D array,

• use arr[index] where index = i * ROWSIZE + j to deference values

– Lab 8/9:
• array of integer pointers,

• can use arr[N][M] to dereference values

Structs

• Multiple values (fields) stored together

– Defines a new type in C's type system

• Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.

Structs

Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting
address of a struct…

The id field is always at
an offset of 8 forward
from the start.

Structs

Struct fields accessible as a base + displacement
In assembly: mov reg_value, 8(reg_base)

Where:
• reg_value is a register holding the value to store (say, 12)
• reg_base is a register holding the base address of the struct

struct student{
int age;
float gpa;
int id;

};

struct student s;
s.id = 12;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting
address of a struct…

The id field is always at
an offset of 8 forward
from the start.

Structs

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:

0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:

0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:

0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …

Why do we want to align data on multiples of the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Data Alignment: Why?

• Simplify hardware

– e.g., only read ints from multiples of 4

– Don’t need to build wiring to access 4-byte chunks at any arbitrary
location in hardware

• Inefficient to load/store single value across alignment boundary (1
vs. 2 loads)

• Simplify OS:

– Prevents data from spanning virtual pages

– Atomicity issues with load/store across boundary

Structs

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

struct student{

int age;

float gpa;

int id;

};

struct student s;

Structs

struct student{

char name[11];

short age;

int id;

};

How much space do we need to store one of these structures? Why?

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

struct student{

char name[11];

short age;

int id;

};

Structs

Memory …

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating structs with
malloc()!

struct student{

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 20 bytes!

Alternative Layout

Same fields, declared in
a different order.

struct student{

char name[11];

short age;

int id;

};

Alternative Layout
Memory …

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a
day-to-day basis. Don’t go out and
rearrange all your struct declarations.

struct student{

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 17 bytes

Aside: Network Headers

• In networks, we attach metadata to packets

– Things like destination address, port #, etc.

• Common for these to be a specific size/format

– e.g., the first 20 bytes must be laid out like …

• Naïvely declaring a struct might introduce padding, violate format.

Cool, so we can get rid of this struct padding by being smart about

declarations?

A. Yes (why?)

B. No (why not?)

Cool, so we can get rid of this padding by being smart about

declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct can’t be
eliminated.

struct T1 { struct T2 {

 char c1; int x;

 char c2; char c1;

 int x; char c2;

}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x

“External” Padding

Array of Structs: Field values in each bucket must be properly
aligned:

 struct T2 arr[3];

Buckets must be on a 8-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 16

Struct field syntax…

struct student {

 int id;

 short age;

 char name[11];

};

struct student s;

s.id = 406432;

s.age = 20;

strcpy(s.name, “Alice”);

Struct is declared on
the stack.
(NOT a pointer)

Struct field syntax…

struct student {

 int id;

 short age;

 char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

Struct field syntax…

struct student {

 int id;

 short age;

 char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

Option 1: Works but ugly

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Option 2: Use struct pointer dereference!

Memory alignment applies elsewhere too!

int x; vs. double y;

char ch[5]; int x;

short s; short s;

double y; char ch[5];

In nearly all cases, you shouldn't stress about this. The compiler will figure
out where to put things.

Exceptions: networking, OS

Structs and Arrays

• Use Structs & Arrays to build complex data types

• Very important to think about type!

from the outside in: (e.g.) a[3].age
• type of a is a pointer to an array of student

• can use [i] notation to access a bucket of this array

• type of a[3] is a student struct

• can use . to access a field in struct

• type of a[3].age is an int

• Remember how different types are passed
• semantics of passing an array vs. a struct

• it is all pass by value, but what value is differs by type

Transition

• First half of course: hardware focus

– How the hardware is constructed

– How the hardware works

– How to interact with hardware / ISA

• Up next: performance and software systems

– Memory performance

– Operating systems

– Standard libraries (strings, threads, etc.)

Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming

Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming

Suppose you’re designing a new computer architecture. Which

type of memory would you use? Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed, moderate cost

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

trade-off between capacity and speed

Classifying Memory

• Broadly, two types of memory:

1. Primary storage: CPU instructions can access any location at any time
(assuming OS permission)

2. Secondary storage: CPU can’t access this directly

Random Access Memory (RAM)

• Any location can be accessed directly by CPU

– Volatile Storage: lose power → lose contents

• Static RAM (SRAM)

– Latch-Based Memory (e.g. RS latch), 1 bit per latch

– Faster and more expensive than DRAM
• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)

– Capacitor-Based Memory, 1 bit per capacitor
• “Main memory”: Not part of CPU

Memory Technologies

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB
(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll cover
caches (SRAM) soon. Let’s look at main memory (DRAM) now.

DRAM

Memory

Chips

Bus Interface

Dynamic Random Access Memory (DRAM)

Capacitor based:

– cheaper and slower than SRAM

– capacitors are leaky (lose charge over time)

– Dynamic: value needs to be refreshed (every 10-
100ms)

Example: DIMM

(Dual In-line Memory Module):

Connecting CPU and Memory

• Components are connected by a bus:

• A bus is a collection of parallel wires that carry address, data,
and control signals.

• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

CPU Cache

How A Memory Read Works

(1) CPU places address A on the memory bus.

Load operation: mov (Address A), %rax

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

A

Hey memory,
please locate
the value at
address A

How A Memory Read Works

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

(2) Main Memory reads address A from memory, fetches value at
that address and puts it on the bus

Sending the
value back to
the CPU

Value

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

(3) CPU reads value from the bus, and copies it into register rax.

a copy also goes into the on-chip cache memory

How A Memory Read Works

1. CPU writes A to bus, memory reads it
2. CPU writes value to bus, memory reads it
3. Memory stores value at address A

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

value, A

How a Memory Write Works

Hey memory,
store value at
address A

Secondary Storage

• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on
secondary storage

– No way to specify a disk location in an instruction

– Operating System moves data to/from memory

Secondary Storage
Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

I/O
Controller

USB
Controller

IDE
Controller

SATA
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

path is much longer

What’s Inside A Disk Drive?
Spindle

Arm

Actuator

Platters

Controller Electronics

(includes processor & memory)
bus

connector

Image from Seagate Technology

R/W head

Data Encoded as
points of
magnetism on
Platter surfaces

Device Driver (part of OS code)

interacts with Controller to R/W to disk

Reading and Writing to Disk

disk surface
spins at a fixed
rotational rate
~7200 rotations/min

disk arm sweeps across
surface to position
read/write head over a
specific track.

Data blocks located in some Sector of some Track on some Surface
1. Disk Arm moves to correct track (seek time)
2. Wait for sector spins under R/W head (rotational latency)
3. As sector spins under head, data are Read or Written

(transfer time)
sector

Memory Technology

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk

– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

Down the hall

Across campus

To Seattle

1 ms == 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB (to Cleveland / Indianapolis)

The Memory Hierarchy

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Where does accessing the network belong?

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: Here

B: Here C: Somewhere else

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
 than local
 disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk, at
reasonable cost.

Motivating Story / Analogy

• You work at a library

• You have a huge library

– 10-15 minutes to find a book and bring to customer

– Customers don’t like waiting…

• You have a small office in the front with shelves, you choose what goes
on shelves

– < 30 seconds to find a book on the front shelf

The Library Hierarchy

Large Warehouse

On
Shelf

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie

Goal: strategically put
movies on office shelf to
reduce trips to warehouse.

Quick vote: Which book should we place on the shelf ?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. Brave New World

D. Pride and Prejudice

E. There’s no way for us to know.

Problem: Prediction

• We can’t know the future…

• So… are we out of luck?
What might we look at to help us decide?

• The past is often a pretty good predictor…

Repeat Customer: Bob

• Has borrowed “The Hobbit” ten times in the last two weeks.

• You talk to him:

– He is looking forward to his tenth Renaissance Fair meet-up.

Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. The Hobbit

D. Pride and Prejudice

E. There is no way for us to knpw

Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. The Hobbit

D. Pride and Prejudice

E. There is no way for us to know

Repeat Customer: Alice

• Alice read “Dune” a month ago.

• You talk to her:

– She’s really likes science fiction!

• Over the next few weeks she borrowed:

– Dune Messiah (Dune-II), Children of Dune (Dune-III)

Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. God Emperor of Dune (Dune-IV)

D. Pride and Prejudice

E. There is no way for us to know

Quick vote: Which book should we place on the shelf today?

A. To Kill a Mockingbird

B. One Hundred Years of Solitude

C. God Emperor of Dune (Dune-IV)

D. Pride and Prejudice

E. There is no way for us to know

Critical Concept: Locality

• Locality: we tend to repeatedly access recently accessed items, or those
that are nearby.

• Temporal locality: An item that has been accessed recently is likely to be
accessed again soon. (Bob)

• Spatial locality: We’re likely to access an item that’s nearby others we
just accessed. (Alice)

In the following code, how many examples are there of temporal / spatial

locality? Where are they?

A. 1 temporal, 1 spatial
B. 1 temporal, 2 spatial
C. 2 temporal, 1 spatial
D. 2 temporal, 2 spatial
E. Some other number

In the following code, how many examples are there of temporal / spatial

locality? Where are they?

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

Faster than memory. (On-chip hardware)

Holds a subset of memory.

Faster than disk.

Holds a subset of disk.

Faster than cache.

Holds a VERY small amount (subset of cache).

Caches, Locality

• A cache is a smaller, faster memory, that holds a subset of a larger
(slower) memory

• We take advantage of locality to keep data in cache as often as we can!

• When accessing memory, we check cache to see if it has the data we’re
looking for.

Cache

• In general: a storage location that holds a subset of a larger memory,
faster to access

• CPU cache: an SRAM on-chip storage location that holds a subset of
DRAM main memory (10-50x faster to access)

• Goal: choose the right subset, based on past locality, to achieve our
abstraction

When we say “cache”, assume we’re referring to CPU
cache from now on, unless we say otherwise.

Cache Basics

• CPU real estate dedicated to cache

• Usually two (or more) levels:

– L1: smallest, fastest

– L2: larger, slower

• Same rules apply:

– L1 subset of L2

ALURegs

L2 Cache

L1

Main Memory

Memory Bus

CPU

Cache Basics

• CPU real estate dedicated to cache

• Usually two levels:

– L1: smallest, fastest

– L2: larger, slower

• We’ll assume one cache
(same principles)

ALURegs

Cache

Main Memory

Memory Bus

CPU

Cache is a subset of main memory.
(Not to scale, memory much bigger!)

Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

ALURegs

Cache

Main Memory

Memory Bus

CPU

Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Request data

Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

• Data in cache (hit):

– Good, send to register

– Cancel/ignore memory

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

• Data in cache (hit):

– Good, send to register

– Cancel/ignore memory

• Data not in cache (miss):

1. Load cache from memory
(might need to evict data)

2. Send to register

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

1.
(~100-200 cycles)

2.

Cache Basics: Write to memory

• Assume data already cached

– Otherwise, bring it in like read

1. Update cached copy.

2. Update memory?

ALURegs

Cache

Main Memory

Memory Bus

CPU

Data

When should we copy the written data from cache to memory?

Why?

A. Immediately update the data in memory when we update the cache.

B. Update the data in memory when we remove ("evict") the data from
the cache.

C. Update the data in memory if the data is needed elsewhere (e.g.,
another core).

D. Update the data in memory at some other time. (When?)

When should we copy the written data from cache to memory?

Why?

A. Write-through: Immediately update the data in memory when we update
the cache.

B. Write-back: Update the data in memory when we remove ("evict") the
data from the cache.

C. Update the data in memory if the data is needed elsewhere (e.g.,
another core).

D. Update the data in memory at some other time. (When?)

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• Write-though: write to memory immediately
+ simpler

- accesses memory more often (slower)

• Write-back: only write to memory on eviction

+ potentially reduces memory accesses (faster)

– complex (cache inconsistent with memory)

Sells better.
Servers/Desktops/Laptops

Cache Coherence

• Keeping multiple cores’
memory consistentALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Cache Coherence

• Keeping multiple cores’ memory
consistent

• If one core updates data
– Copy data directly from one cache to

the other.

– Avoid (slower) memory

• Lots of HW complexity here. We
might discuss towards end of
semester.

ALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Recall

• A cache is a smaller, faster memory, that holds a subset of a larger
(slower) memory

• We take advantage of locality to keep data in cache as often as we can!

• When accessing memory, we check cache to see if it has the data we’re
looking for.

Why we miss…

• Compulsory (cold-start) miss:

– First time we use data, load it into cache.

• Capacity miss:

– Cache is too small to store all the data we’re using.

• Conflict miss:

– To bring in new data to the cache, we evicted other data that we’re still
using.

Cache Design

• Lot’s of characteristics to consider:

– Where should data be stored in the cache?

Main Memory Main Memory

Cache Cache

Cache Design

• Lot’s of characteristics to consider:

– Where should data be stored in the cache?

– What size data chunks should we store? (block size)

Main Memory Main Memory

Cache Cache

Cache Design

• Lot’s of characteristics to consider:

– Where should data be stored in the cache?

– What size data chunks should we store? (block size)

• Goals:

– Maximize hit rate

– Maximize (temporal & spatial) locality benefits

– Reduce cost/complexity of design

Suppose the CPU asks for data, it’s not in cache.

We need to move in into cache from memory. Where in the cache

should it be allowed to go?

A. In exactly one place.

B. In a few places.

C. In most places, but not all.

D. Anywhere in the cache.

ALURegs

Cache

Main Memory

Memory Bus

CPU

? ?

?

A. Direct-Mapped: In exactly one place

• Every location in memory is directly mapped to one place
in the cache.

• Easy to find data.

B. Set-Associative: In a few places.

• A memory location can be mapped to (2, 4, 8) locations in
the cache.

• Middle ground.

C. In most places, but not all.

D. “Fully associative”: Anywhere in the cache.

• No restrictions on where memory can be placed in the cache.

• Fewer conflict misses, more searching.

A larger block size (caching memory in larger chunks) is likely to

exhibit…

A. Better temporal locality

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

A larger block size (caching memory in larger chunks) is likely to

exhibit…

A. Better temporal locality (does not change how freq. we
use a block)

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

Slide 97

hard to make a
determination
- don’t know what the

prog, is doing
- harmful if prog. does

not exhibit good spatial
locality

Block Size Implications

• Small blocks

– Room for more blocks

– Fewer conflict misses

• Large blocks

– Fewer trips to memory

– Longer transfer time

– Fewer cold-start misses

Main Memory Main Memory

Cache Cache

Trade-offs

• There is no single best design for all purposes!

• Common systems question: which point in the design space should we
choose?

• Given a particular scenario:

– Analyze needs

– Choose design that fits the bill

Real CPUs

• Goals: general purpose processing

– balance needs of many use cases

– middle of the road: jack of all trades, master of none

• Some associativity, medium size blocks:

– 8-way associative (memory in one of eight places)

– 16 or 32 or 64-byte blocks

What should we use to determine whether or not data is in the cache?

A. The memory address of the data.

B. The value of the data.

C. The size of the data.

D. Some other aspect of the data.

What should we use to determine whether or not data is in the cache?

A. The memory address of the data.

– Memory address is how we identify the data.

B. The value of the data.
– If we knew this, we wouldn’t be looking for it!

C. The size of the data.

D. Some other aspect of the data.

Recall: Memory Reads

CPU places address A on the memory bus.

Load operation: movl (A), %eax

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

A

Slide 103

Hey memory, please
locate the value at
address A: same
address gets sent to
the cache!

Recall: Memory Reads

Memory retrieves value and sends it across bus.

CPU reads value from the bus, and copies it into register
%eax, a copy also goes into the on-chip cache memory.

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

Value

Sending the
value back to
the CPU

Memory Address Tells Us…

• Is the block containing the byte(s) you want already in the cache?

• If not, where should we put that block?

– Do we need to kick out (“evict”) another block?

• Which byte(s) within the block do you want?

Memory Addresses

• Like everything else: series of bits (32 or 64)

• Keep in mind:

– N bits gives us 2N unique values.

• 64-bit address:

10110001 01110010 11010100 01010110 10110001 01110010 11010100
01010110

Divide into regions, each with distinct meaning.

Address Division

• First section: Tag

– Of all the addresses that map to this location, which one is here?

– Number of bits for this section is any bits left over after index and offset.

• Second section: Index

– Which location(s) in the cache should we check for the data with this address?

– Number of bits for this section depends on the number of cache locations.

• Third section: Offset

– If we find a block of bytes in the cache (on a hit) which byte offset within the
block do we actually want?

– Number of bits for this section depends on the block size – must be able to
uniquely identify every byte in the block.

A. In exactly one place. (“Direct-mapped”)

– Every location in memory is directly mapped to one
place in the cache. Easy to find data.

B. In a few places. (“Set associative”)

– A memory location can be mapped to (2, 4, 8)
locations in the cache. Middle ground.

A. Anywhere in the cache. (“Fully associative”)

– No restrictions on where memory can be placed in the
cache. Fewer conflict misses, more searching.

Direct-Mapped

• One place data can be.

• Example: let’s assume some parameters:

– 1024 cache locations (every block mapped to one)

– Block size of 8 bytes

Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

1024 cache locations (every block mapped to one)
Block size of 8 bytes

Cache meta-data

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

Valid bit: is the entry valid?
If set: data is correct, use it if we
‘hit’ in cache
If not set: ignore ‘hits’, the data is
garbage

Dirty bit: has the data been written?
Used by write-back caches
If set, need to update memory
before eviction

Address division: Direct-Mapped

• Identify byte in block

– How many bits do we need to
represent each byte uniquely?

• Identify which row (line)

– How many bits do we need to
represent each line uniquely?

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

A. Block 8 bits Row 1024 bits B. Block 3 bits Row 10 bits
C. Block 10 bits Row 10 bits D. Block 32 bits Row 32 bits

Address division: Direct-Mapped

• Identify byte in block

– How many bits? 3

• Identify which row (line)

– How many bits? 10

• Tag:

– 64 - 13: 51 bits

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Address division:

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

Direct-Mapped

Address division:
Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

In parallel, check:
Tag:
Does the cache hold the data we’re
looking for, or some other block?

Valid bit:
If entry is not valid, don’t trust garbage in
that line (row).

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

If tag doesn’t match,
or line is invalid, it’s a miss!

Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

0 1 2 3 4 5 6 7

Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 4

0 1 2 3 4 5 6 7

V D Tag Data

…

=

Tag Index Byte offset

0: miss
1: hit

Select Byte(s)

Data
Input: Memory Address

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes

– 4 bits in address for the index

– 4 bits in address for byte offset

– Remaining bits (8): tag

Direct-Mapped Example

• Let’s say we access memory at
address:

– 0110101100110100

• Step 1:

– Partition address into tag, index,
offset

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:

– 01101011 0011 0100

• Step 1:

– Partition address into tag, index,
offset

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:

– 01101011 0011 0100

• Step 2:

– Use index to find line (row)

– 0011 -> 3

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:

– 01101011 0011 0100

• Step 2:

– Use index to find line (row)

– 0011 -> 3

Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:

– 01101011 0011 0100

• Note:

– ANY address with 0011 (3) as the
middle four index bits will map to
this cache line.

– e.g. 11111111 0011 0000

So, which data is here?

Data from address
0000000000110000
to
1111111100111111 can map to
the same cache line!

Use tag to store high-order bits.
Let’s us determine which data is
here! (many addresses map here)

Line V D Tag Data (16 Bytes)

0

1

2

3 01101011

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:

– 01101011 0011 0100

• Step 3:

– Check the tag

– Is it 01101011 (hit)?

– Something else (miss)?

– (Must also ensure valid)

Eviction

• If we don’t find what we’re looking for (miss), we need to bring in the data
from memory.

• Make room by kicking something out.
– If line to be evicted is dirty, write it to memory first.

• Another important systems distinction:
– Mechanism: An ability or feature of the system.

What you can do.

– Policy: Governs the decisions making for using the mechanism. What you should
do.

Eviction

• For direct-mapped cache:

– Mechanism: overwrite bits in cache line, updating

• Valid bit

• Tag

• Data

– Policy: not many options for direct-mapped

• Overwrite at the only location it could be!

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Find line:

Tag doesn’t match, bring in from memory.

If dirty, write back first!

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 3941 92

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

2. Copy data from memory.
Update tag.

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable
straddle multiple cache blocks?

0 1 2 3 4 5 6 7

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable
straddle multiple cache blocks?

No, recall mem. alignment!
0 1 2 3 4 5 6 7

Suppose we had 8-bit addresses, a cache with 8 lines, and a block

size of 4 bytes.

• How many bits would we use for:

– Tag?

– Index?

– Offset?

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes

– 4 bits in address for the index

– 4 bits in address for byte offset

– Remaining bits (8): tag

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 9

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following memory

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following memory

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

No change necessary.

How would the cache change if we performed the following memory

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4
1 0

1
011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following memory

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2
0
1

0 101 101 15 12

3 1 1 001 8

4
1 0

1
011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Note: tag happened to
match, but line was invalid.

How would the cache change if we performed the following memory

operations?

How would the cache change if we performed the following memory

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2
0
1

0 101 101 15 12

3
1 1

1
001 011 8 2

4
1 0

1
011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

1. Write dirty line to memory.
2. Load new value, set it to 2,

mark it dirty (write).

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems

	Reading Quiz
	Slide 2: Reading Quiz

	Stack Functions
	Slide 9: Today

	Function Arguments
	Slide 10
	Slide 11: Dynamically Allocated 2D Array: Array of Pointers
	Slide 12: Using 2D Array (Array of Pointers) As Parameters
	Slide 13: Using 2D Array (Array of Pointers): How about free-ing this memory?
	Slide 14: Two Ways for 2D Arrays
	Slide 15: Structs
	Slide 16: Structs
	Slide 17: Structs
	Slide 18: Structs
	Slide 19: Structs
	Slide 20: Structs
	Slide 21: Data Alignment:
	Slide 22: Why do we want to align data on multiples of the data size?
	Slide 23: Data Alignment: Why?
	Slide 24: Structs
	Slide 25: Structs
	Slide 26: How much space do we need to store one of these structures? Why?
	Slide 27: Structs
	Slide 28: Alternative Layout
	Slide 29: Alternative Layout
	Slide 30: Aside: Network Headers
	Slide 31: Cool, so we can get rid of this struct padding by being smart about declarations?
	Slide 32: Cool, so we can get rid of this padding by being smart about declarations?
	Slide 33: “External” Padding
	Slide 34: Struct field syntax…
	Slide 35: Struct field syntax…
	Slide 36: Struct field syntax…
	Slide 37: Memory alignment applies elsewhere too!
	Slide 38: Structs and Arrays
	Slide 39: Transition
	Slide 40: Efficiency
	Slide 41: Efficiency
	Slide 42: Suppose you’re designing a new computer architecture. Which type of memory would you use? Why?
	Slide 43: Classifying Memory
	Slide 44: Random Access Memory (RAM)
	Slide 45: Memory Technologies
	Slide 46: Dynamic Random Access Memory (DRAM)
	Slide 47: Connecting CPU and Memory
	Slide 48: How A Memory Read Works
	Slide 49: How A Memory Read Works
	Slide 50: How A Memory Read Works
	Slide 51: How a Memory Write Works
	Slide 52: Secondary Storage
	Slide 53: Secondary Storage
	Slide 54
	Slide 55: Reading and Writing to Disk
	Slide 56: Memory Technology
	Slide 57: The Memory Hierarchy
	Slide 58: Where does accessing the network belong?
	Slide 59: The Memory Hierarchy
	Slide 60: Abstraction Goal
	Slide 61: Motivating Story / Analogy
	Slide 62: The Library Hierarchy
	Slide 63: Quick vote: Which book should we place on the shelf ?
	Slide 64: Problem: Prediction
	Slide 65: Repeat Customer: Bob
	Slide 66: Quick vote: Which book should we place on the shelf today?
	Slide 67: Quick vote: Which book should we place on the shelf today?
	Slide 68: Repeat Customer: Alice
	Slide 69: Quick vote: Which book should we place on the shelf today?
	Slide 70: Quick vote: Which book should we place on the shelf today?
	Slide 71: Critical Concept: Locality
	Slide 72: In the following code, how many examples are there of temporal / spatial locality? Where are they?
	Slide 73: In the following code, how many examples are there of temporal / spatial locality? Where are they?
	Slide 74: Big Picture
	Slide 75: Caches, Locality
	Slide 76: Cache
	Slide 77: Cache Basics
	Slide 78: Cache Basics
	Slide 79: Cache Basics: Read from memory
	Slide 80: Cache Basics: Read from memory
	Slide 81: Cache Basics: Read from memory
	Slide 82: Cache Basics: Read from memory
	Slide 83: Cache Basics: Write to memory
	Slide 84: When should we copy the written data from cache to memory? Why?
	Slide 85: When should we copy the written data from cache to memory? Why?
	Slide 86: Cache Basics: Write to memory
	Slide 87: Cache Coherence
	Slide 88: Cache Coherence
	Slide 89: Recall
	Slide 90: Why we miss…
	Slide 91: Cache Design
	Slide 92: Cache Design
	Slide 93: Cache Design
	Slide 94: Suppose the CPU asks for data, it’s not in cache. We need to move in into cache from memory. Where in the cache should it be allowed to go?
	Slide 95
	Slide 96: A larger block size (caching memory in larger chunks) is likely to exhibit…
	Slide 97: A larger block size (caching memory in larger chunks) is likely to exhibit…
	Slide 98: Block Size Implications
	Slide 99: Trade-offs
	Slide 100: Real CPUs
	Slide 101: What should we use to determine whether or not data is in the cache?
	Slide 102: What should we use to determine whether or not data is in the cache?
	Slide 103: Recall: Memory Reads
	Slide 104: Recall: Memory Reads
	Slide 105: Memory Address Tells Us…
	Slide 106: Memory Addresses
	Slide 107: Address Division
	Slide 108
	Slide 109: Direct-Mapped
	Slide 110: Direct-Mapped
	Slide 111: Cache meta-data
	Slide 112: Address division: Direct-Mapped
	Slide 113: Address division: Direct-Mapped
	Slide 114: Direct-Mapped
	Slide 115: Direct-Mapped
	Slide 116: Direct-Mapped
	Slide 117: Direct-Mapped
	Slide 118: Direct-Mapped
	Slide 119
	Slide 120: Direct-Mapped Example
	Slide 121: Direct-Mapped Example
	Slide 122: Direct-Mapped Example
	Slide 123: Direct-Mapped Example
	Slide 124: Direct-Mapped Example
	Slide 125: Direct-Mapped Example
	Slide 126: Direct-Mapped Example
	Slide 127: Eviction
	Slide 128: Eviction
	Slide 129: Eviction: Direct-Mapped
	Slide 130: Eviction: Direct-Mapped
	Slide 131: Eviction: Direct-Mapped
	Slide 132: Direct-Mapped
	Slide 133: Direct-Mapped
	Slide 134: Suppose we had 8-bit addresses, a cache with 8 lines, and a block size of 4 bytes.
	Slide 135: Direct-Mapped Example
	Slide 136
	Slide 137: How would the cache change if we performed the following memory operations?
	Slide 138: How would the cache change if we performed the following memory operations?
	Slide 139: How would the cache change if we performed the following memory operations?
	Slide 140: How would the cache change if we performed the following memory operations?
	Slide 141: How would the cache change if we performed the following memory operations?

