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Today

• Accessing things via an offset

– Arrays, Structs, Unions

– Connect accessing them in C with what we know about assembly

• How complex structures are stored in memory

– Multi-dimensional arrays & Structs



So Far: One Dimensional Arrays

• We are not restricted to an array of ints..
How about an array of arrays of ints?

“Give me three sets of four integers”

int twodims[3][4];

• How should these be organized in memory?



Declaring Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

#define R 3

#define C 4 

int  matrix[R][C] , i, j;

for(i=0; i<R; i++) {

  for(j=0; j<C; j++) {

     matrix[i][j] = i+j;

   }

}

matrix

• Declare with row and column dimension
• Can use matrix[i][j] to index



Memory Layout of Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

matrix

Row Major Order in C:
all Row 0 buckets, followed by
all Row 1 buckets, followed by
all Row 2 buckets, …

Row 0

Row 1

Row 2



Using Static 2D Arrays as Parameters
• 2D array parameter must specify column dimension

• Why? Compiler needs the column dimension to calculate offset from base address

 in memory of bucket [i][j] 

• Row dimension passed as 2nd parameter to make function more generic 

• function can be passed any 2D array with same column dimension

void foo(int matrix[][C], int rows){

   int i, j;

   for(i=0; i < rows; i++) {

    for(j=0; j< C; j++) {

       matrix[i][j] = i*j;

    }

   }

}

#define R  3

#define C  4 

int main() {

  int arr[R][C];

  int grid[100][C];

  foo(arr,  R);

  foo(grid, 100);



Offset of matrix[row][col] from base?

                    = row * MAX_COL + col 

Calculating Offset for Static 2D Arrays

C cols

0 1 2 … C-1

R 0

rows 1

…

R-1

matrix

TIP: MAX_COL = how big each row is = max number of columns!



Offset of matrix[row][col] from base?

= row * MAX_COL + col 

Calculating Offset for Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

matrix

E.g., location of matrix[1][3]?

 = base + (1 * MAX_COL + 3) buckets
 = base + (1 * 4 + 3) buckets
 = base + 7 buckets 

// skip 1 full row and 3 buckets

// skip 7 buckets



Offset of matrix[row][col] from base?

= row * MAX_COL + col 

Calculating Offset for Static 2D Arrays

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]   offset 1

0x9240: 2 [0][2]   2

0x9248: 3 [0][3]   3

0x9250: 1 [1][0]   4

0x9258: 2 [1][1]   5

0x9260: 3 [1][2]   6

0x9268: 4 [1][3]   offset 7

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

matrix

E.g., location of matrix[1][3]?

 = base + (1 * MAX_COL + 3) buckets
 = base + (1 * 4 + 3) buckets
 = base + 7 buckets 

7 buckets 



Address of matrix[row][col] from base?

= base address + row * MAX_COL*SIZE + col*SIZE 

Calculating Address for Static 2D Arrays

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]   offset 1

0x9240: 2 [0][2]   2

0x9248: 3 [0][3]   3

0x9250: 1 [1][0]   4

0x9258: 2 [1][1]   5

0x9260: 3 [1][2]   6

0x9268: 4 [1][3]   offset 7

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

SIZE

E.g., address of matrix[1][3]? Assume SIZE of bucket is 8 bytes

 = base addr. + (1 * MAX_COL *SIZE + 3*SIZE) bytes

 = base addr. + (1 * 4 * 8 + 3 * 8) bytes
 = base addr. + (32 + 24) bytes
 = base addr. + 0x38 ➔ 0x9320 + 0x38 = 0x9268 

0x38 
bytes 



If we declared long int matrix[5][3];, and the base of 

matrix is 0x3420, what is the address of matrix[3][2]? 
Assume sizeof(long int) = 8 bytes.

A. 0x3488

B. 0x3470

C. 0x3478

D. 0x344C

E. None of these

address = base address + row * MAX_COL *SIZE + col*SIZE 



If we declared long int matrix[5][3];, and the base of 

matrix is 0x3420, what is the address of matrix[3][2]? 
Assume sizeof(long int) = 8 bytes.

A. 0x3488

B. 0x3470

C. 0x3478

D. 0x344C

E. None of these

address = base address + row * MAX_COL *SIZE + col*SIZE 



• Given the row-major order layout, a 
"two-dimensional array" is still just a
contiguous block of memory:

      The malloc function just needs to 
      return… a pointer to a contiguous 
      block of memory! That is, you
      only need one call to malloc.

Dynamically Allocating 2D Arrays: Contiguous Memory

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2



Caveat: the C compiler doesn't know that you're 
planning to use this block of memory with more 

than one index (i.e., row and column).

Can't access: matrix[i][j]!

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

For this example, with three 
rows and four columns:

long int * matrix = malloc(3 * 4 * sizeof (long int));

Dynamically Allocating 2D Arrays: Contiguous Memory



2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

For this example, with three 
rows and four columns:

To access  matrix[i][j], compute the offset 
manually:

index = i * COL_MAX + j;

matrix[index] = …

Dynamically Allocating 2D Arrays: Contiguous Memory

long int * matrix = malloc(3 * 4 * sizeof (long int));



Using Dynamically Allocated 2D Arrays as Parameters

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

   int i, j;

   for(i=0; i < rows; i++) {

        for(j=0; j< cols; j++) {

            matrix[i*cols + j] = i*j;

    }

   }

}

int main() {

   long int *2d_arr = malloc(3 * 4 * sizeof(long int));

   dy2D(2d_arr, 3, 4);

}



Using Dynamically Allocated 2D Arrays as Parameters

Stack 

main: 

Heap 

dy2D: 

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

addr in heap2d_arr

addr in heapmatrix

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

   int i, j;

   for(i=0; i < rows; i++) {

        for(j=0; j< cols; j++) {

            matrix[i*cols + j] = i*j;

    }

   }

}

int main() {

   long int *2d_arr = malloc(3 * 4 * sizeof(long int));

   dy2D(2d_arr, 3, 4);

}



But… can’t we have pointers to pointers?

• If we want a dynamic array of ints:

– declare int *array = malloc(N * sizeof(int))

– Treat this internally as a 2D array (i*COL + j)

• If we want an array of int pointers:

– declare int **array = malloc(…)

– For each pointer, dynamically allocate an array



But… can’t we have pointers to pointers?

• If we want a dynamic array of ints:

– declare int *array = malloc(N * sizeof(int))

– Treat this internally as a 2D array (i*COL + j)

• If we want an array of int pointers:

– declare int **array = malloc(…)

– For each pointer, dynamically allocate an array

– The type of array[0], array[1], etc. is:  int *

– For each one of those, we can malloc an array of ints:

• array[0] = malloc(M * sizeof(int))



Dynamically Allocated 2D Array: Array of Pointers

• One malloc for an array of rows:    an array of int*

• N mallocs for each row's column values:  arrays of int

– variable type is int**

– stores address of rows array: an array of int*

int ** 2d_array;

// allocate a row of int pointers 

2d_array = malloc (sizeof(int *) *M);

// for each int pointer in the row, 
// allocate an array

for(i=0; i < M; i++) {
  2d_array[i] = malloc(sizeof(int)*N);
}

Stack 

main: 
addr in heap2d_array

Heap 
0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                M
-1

0
   1

    2
      …

                M
-1

0
   1

    2
      …

                M
-1



Using 2D Array (Array of Pointers) As Parameters

Stack 
main: addr in heap2d_array

Heap 

parameter gets base address of rows array of int* 

• its type is int** : a pointer to int*: (with buckets of int)

• pass row and column dimension values

• Can use [i][j] to index into a specific location in 2D array.

void init2D(int **arr, int rows, int cols){

int i, j;

    for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

arr[i][j] = 0;

}

}

}

addr in heaparr

init2D: 

0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                N
-1

0
   1

    2
      …

                N
-1

0
   1

    2
      …

               N
-1



Using 2D Array (Array of Pointers): How about free-ing this memory?

Stack 
main: addr in heap2d_array

Heap 
void free(int **arr){

//TODO: decide which order to free memory

Option A: free the int ** array first

Option B: free the innner arrays (each int* array 

first)

}

addr in heaparr

init2D: 

0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                N
-1

0
   1

    2
      …

                N
-1

0
   1

    2
      …

               N
-1

parameter gets base address of rows array of int* 

• its type is int** -> a pointer to an array of int*-> 

• each  int* -> a pointer to an array of ints



Two Ways for 2D Arrays

• We'll use BOTH methods in future labs:

– Lab 7: 
• column-major, large chunk of memory that we treat as a 2D array,

• use arr[index] where index = i * ROWSIZE + j to deference values

– Lab 8/9: 
• array of integer pointers, 

• can use arr[N][M] to dereference values



Structs

• Multiple values (fields) stored together

– Defines a new type in C's type system

• Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.



Structs

Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting 
address of a struct…

The id field is always at 
an offset of 8 forward 
from the start.



Structs

Struct fields accessible as a base + displacement
In assembly: mov reg_value, 8(reg_base)

Where:
• reg_value is a register holding the value to store (say, 12)
• reg_base is a register holding the base address of the struct

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;
s.id = 12;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting 
address of a struct…

The id field is always at 
an offset of 8 forward 
from the start.



Structs

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:

0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:

0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:

0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …



Why do we want to align data on multiples of the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.



Data Alignment: Why?

• Simplify hardware

– e.g., only read ints from multiples of 4

– Don’t need to build wiring to access 4-byte chunks at any arbitrary 
location in hardware

• Inefficient to load/store single value across alignment boundary (1 
vs. 2 loads)

• Simplify OS:

– Prevents data from spanning virtual pages

– Atomicity issues with load/store across boundary



Structs

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;



Structs

struct student{                

char name[11];

short age;

int id;

};



How much space do we need to store one of these structures?  Why?

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

struct student{                

char name[11];

short age;

int id;

};



Structs

Memory …   

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating structs with 
malloc()!

struct student{                

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 20 bytes!



Alternative Layout

Same fields, declared in 
a different order.

struct student{                

char name[11];

short age;

int id;

};



Alternative Layout
Memory …   

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a 
day-to-day basis.  Don’t go out and 
rearrange all your struct declarations.

struct student{                

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 17 bytes



Aside: Network Headers

• In networks, we attach metadata to packets

– Things like destination address, port #, etc.

• Common for these to be a specific size/format

– e.g., the first 20 bytes must be laid out like …

• Naïvely declaring a struct might introduce padding, violate format.



Cool, so we can get rid of this struct padding by being smart about 

declarations?

A. Yes (why?)

B. No (why not?)



Cool, so we can get rid of this padding by being smart about 

declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct can’t be 
eliminated.

struct T1 {     struct T2 {

    char c1;      int x;

    char c2;          char c1;

    int  x;              char c2;

};        };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x



“External” Padding

Array of Structs: Field values in each bucket must be properly 
aligned:

   struct T2 arr[3];

Buckets must be on a 8-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 16



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student s;

s.id = 406432;

s.age = 20;

strcpy(s.name, “Alice”);

Struct is declared on 
the stack.
(NOT a pointer)



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

Option 1: Works but ugly

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Option 2: Use struct pointer dereference!



Memory alignment applies elsewhere too!

int x;         vs.     double y;

char ch[5];            int x;

short s;               short s;

double y;              char ch[5];

In nearly all cases, you shouldn't stress about this.  The compiler will figure 
out where to put things.

Exceptions: networking, OS



Structs and Arrays

• Use Structs & Arrays to build complex data types

• Very important to think about type!

from the outside in:  (e.g.)  a[3].age
• type of a is a pointer to an array of student

• can use [i] notation to access a bucket of this array

• type of a[3] is a student struct

• can use . to access a field in struct

• type of a[3].age is an int

• Remember how different types are passed
• semantics of passing an array vs. a struct

• it is all pass by value, but what value is differs by type



Up next…

• New topic: Storage and the Memory Hierarchy



Transition

• First half of course: hardware focus

– How the hardware is constructed

– How the hardware works

– How to interact with hardware / ISA

• Up next: performance and software systems

– Memory performance

– Operating systems

– Standard libraries (strings, threads, etc.)



Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect  on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming



Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect  on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming



Suppose you’re designing a new computer architecture.  Which 

type of memory would you use?  Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed, moderate cost 

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

trade-off between capacity and speed 



Classifying Memory

• Broadly, two types of memory:

1. Primary storage: CPU instructions can access any location at any time 
(assuming OS permission)

2. Secondary storage: CPU can’t access this directly



Random Access Memory (RAM)

• Any location can be accessed directly by CPU

– Volatile Storage: lose power → lose contents

• Static RAM (SRAM)

– Latch-Based Memory (e.g. RS latch), 1 bit per latch

– Faster and more expensive than DRAM
• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)

– Capacitor-Based Memory, 1 bit per capacitor
• “Main memory”: Not part of CPU



Memory Technologies

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB
(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll cover 
caches (SRAM) soon.  Let’s look at main memory (DRAM) now.



DRAM

Memory

Chips

Bus Interface

Dynamic Random Access Memory (DRAM)

Capacitor based: 

– cheaper and slower than SRAM

– capacitors are leaky (lose charge over time)

– Dynamic: value needs to be refreshed (every 10-
100ms)
                   

Example: DIMM 

(Dual In-line Memory Module):



Connecting CPU and Memory

• Components are connected by a bus:

• A bus is a collection of parallel wires that carry address, data, 
and control signals.

• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

CPU Cache

A



How A Memory Read Works

(1) CPU places address A on the memory bus.

Load operation:  mov (Address A), %rax

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

A

Hey memory, 
please locate 
the value at 
address A



How A Memory Read Works

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

(2) Main Memory reads address A from  memory, fetches value at 
that address and puts it on the bus

Sending the 
value back to 
the CPU

Value



Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

(3) CPU reads value from the bus, and copies it into register rax. 

a copy also goes into the on-chip cache memory

How A Memory Read Works



1. CPU writes A to bus, memory reads it 
2. CPU writes value to bus, memory reads it 
3. Memory stores value at address A

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

value, A

How a Memory Write Works

Hey memory, 
store value at 
address A  



Secondary Storage

• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on 
secondary storage

– No way to specify a disk location in an instruction

– Operating System moves data to/from memory



Secondary Storage
Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

I/O 
Controller

USB 
Controller

IDE 
Controller

SATA 
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

path is much longer



What’s Inside A Disk Drive?
Spindle

Arm

Actuator

Platters

Controller Electronics

(includes processor & memory) 
bus

connector

Image from  Seagate Technology

R/W head

Data Encoded as 
points of 
magnetism on 
Platter surfaces

Device Driver (part of OS code) 

interacts with Controller to R/W to disk



Reading and Writing to Disk

disk surface 
spins at a fixed
rotational rate
~7200 rotations/min

disk arm sweeps across 
surface to position 
read/write head over a 
specific  track.

Data blocks located in some Sector of some Track on some Surface
1. Disk Arm moves to correct track (seek time)
2. Wait for sector spins under R/W head (rotational latency)
3. As sector spins under head, data are Read or Written

(transfer time)
sector



Memory Technology

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk

– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

Down the hall

Across campus

To Seattle

1 ms == 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB                            (to Cleveland / Indianapolis)



The Memory Hierarchy

Larger  
Slower
Cheaper 
per byte

Local secondary storage (disk)
~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs 

can
directly 
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access



Where does accessing the network belong?

Larger  
Slower
Cheaper 
per byte

Local secondary storage (disk)
~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs 

can
directly 
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: Here

B: Here C: Somewhere else



The Memory Hierarchy

Local secondary storage (disk)

Larger  
Slower
Cheaper 
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs 

can
directly 
access

slower
      than local
           disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network



Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk, at 
reasonable cost.
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