
CS 31: Introduction to Computer Systems

15 Storage
03-20-2025

Today

• Accessing things via an offset

– Arrays, Structs, Unions

– Connect accessing them in C with what we know about assembly

• How complex structures are stored in memory

– Multi-dimensional arrays & Structs

So Far: One Dimensional Arrays

• We are not restricted to an array of ints..
How about an array of arrays of ints?

“Give me three sets of four integers”

int twodims[3][4];

• How should these be organized in memory?

Declaring Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

#define R 3

#define C 4

int matrix[R][C] , i, j;

for(i=0; i<R; i++) {

 for(j=0; j<C; j++) {

 matrix[i][j] = i+j;

 }

}

matrix

• Declare with row and column dimension
• Can use matrix[i][j] to index

Memory Layout of Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

matrix

Row Major Order in C:
all Row 0 buckets, followed by
all Row 1 buckets, followed by
all Row 2 buckets, …

Row 0

Row 1

Row 2

Using Static 2D Arrays as Parameters
• 2D array parameter must specify column dimension

• Why? Compiler needs the column dimension to calculate offset from base address

 in memory of bucket [i][j]

• Row dimension passed as 2nd parameter to make function more generic

• function can be passed any 2D array with same column dimension

void foo(int matrix[][C], int rows){

 int i, j;

 for(i=0; i < rows; i++) {

 for(j=0; j< C; j++) {

 matrix[i][j] = i*j;

 }

 }

}

#define R 3

#define C 4

int main() {

 int arr[R][C];

 int grid[100][C];

 foo(arr, R);

 foo(grid, 100);

Offset of matrix[row][col] from base?

 = row * MAX_COL + col

Calculating Offset for Static 2D Arrays

C cols

0 1 2 … C-1

R 0

rows 1

…

R-1

matrix

TIP: MAX_COL = how big each row is = max number of columns!

Offset of matrix[row][col] from base?

= row * MAX_COL + col

Calculating Offset for Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

matrix

E.g., location of matrix[1][3]?

 = base + (1 * MAX_COL + 3) buckets
 = base + (1 * 4 + 3) buckets
 = base + 7 buckets

// skip 1 full row and 3 buckets

// skip 7 buckets

Offset of matrix[row][col] from base?

= row * MAX_COL + col

Calculating Offset for Static 2D Arrays

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1] offset 1

0x9240: 2 [0][2] 2

0x9248: 3 [0][3] 3

0x9250: 1 [1][0] 4

0x9258: 2 [1][1] 5

0x9260: 3 [1][2] 6

0x9268: 4 [1][3] offset 7

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

matrix

E.g., location of matrix[1][3]?

 = base + (1 * MAX_COL + 3) buckets
 = base + (1 * 4 + 3) buckets
 = base + 7 buckets

7 buckets

Address of matrix[row][col] from base?

= base address + row * MAX_COL*SIZE + col*SIZE

Calculating Address for Static 2D Arrays

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1] offset 1

0x9240: 2 [0][2] 2

0x9248: 3 [0][3] 3

0x9250: 1 [1][0] 4

0x9258: 2 [1][1] 5

0x9260: 3 [1][2] 6

0x9268: 4 [1][3] offset 7

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

SIZE

E.g., address of matrix[1][3]? Assume SIZE of bucket is 8 bytes

 = base addr. + (1 * MAX_COL *SIZE + 3*SIZE) bytes

 = base addr. + (1 * 4 * 8 + 3 * 8) bytes
 = base addr. + (32 + 24) bytes
 = base addr. + 0x38 ➔ 0x9320 + 0x38 = 0x9268

0x38
bytes

If we declared long int matrix[5][3];, and the base of

matrix is 0x3420, what is the address of matrix[3][2]?
Assume sizeof(long int) = 8 bytes.

A. 0x3488

B. 0x3470

C. 0x3478

D. 0x344C

E. None of these

address = base address + row * MAX_COL *SIZE + col*SIZE

If we declared long int matrix[5][3];, and the base of

matrix is 0x3420, what is the address of matrix[3][2]?
Assume sizeof(long int) = 8 bytes.

A. 0x3488

B. 0x3470

C. 0x3478

D. 0x344C

E. None of these

address = base address + row * MAX_COL *SIZE + col*SIZE

• Given the row-major order layout, a
"two-dimensional array" is still just a
contiguous block of memory:

 The malloc function just needs to
 return… a pointer to a contiguous
 block of memory! That is, you
 only need one call to malloc.

Dynamically Allocating 2D Arrays: Contiguous Memory

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2

Caveat: the C compiler doesn't know that you're
planning to use this block of memory with more

than one index (i.e., row and column).

Can't access: matrix[i][j]!

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

For this example, with three
rows and four columns:

long int * matrix = malloc(3 * 4 * sizeof (long int));

Dynamically Allocating 2D Arrays: Contiguous Memory

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

For this example, with three
rows and four columns:

To access matrix[i][j], compute the offset
manually:

index = i * COL_MAX + j;

matrix[index] = …

Dynamically Allocating 2D Arrays: Contiguous Memory

long int * matrix = malloc(3 * 4 * sizeof (long int));

Using Dynamically Allocated 2D Arrays as Parameters

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

 int i, j;

 for(i=0; i < rows; i++) {

 for(j=0; j< cols; j++) {

 matrix[i*cols + j] = i*j;

 }

 }

}

int main() {

 long int *2d_arr = malloc(3 * 4 * sizeof(long int));

 dy2D(2d_arr, 3, 4);

}

Using Dynamically Allocated 2D Arrays as Parameters

Stack

main:

Heap

dy2D:

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

addr in heap2d_arr

addr in heapmatrix

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

 int i, j;

 for(i=0; i < rows; i++) {

 for(j=0; j< cols; j++) {

 matrix[i*cols + j] = i*j;

 }

 }

}

int main() {

 long int *2d_arr = malloc(3 * 4 * sizeof(long int));

 dy2D(2d_arr, 3, 4);

}

But… can’t we have pointers to pointers?

• If we want a dynamic array of ints:

– declare int *array = malloc(N * sizeof(int))

– Treat this internally as a 2D array (i*COL + j)

• If we want an array of int pointers:

– declare int **array = malloc(…)

– For each pointer, dynamically allocate an array

But… can’t we have pointers to pointers?

• If we want a dynamic array of ints:

– declare int *array = malloc(N * sizeof(int))

– Treat this internally as a 2D array (i*COL + j)

• If we want an array of int pointers:

– declare int **array = malloc(…)

– For each pointer, dynamically allocate an array

– The type of array[0], array[1], etc. is: int *

– For each one of those, we can malloc an array of ints:

• array[0] = malloc(M * sizeof(int))

Dynamically Allocated 2D Array: Array of Pointers

• One malloc for an array of rows: an array of int*

• N mallocs for each row's column values: arrays of int

– variable type is int**

– stores address of rows array: an array of int*

int ** 2d_array;

// allocate a row of int pointers

2d_array = malloc (sizeof(int *) *M);

// for each int pointer in the row,
// allocate an array

for(i=0; i < M; i++) {
 2d_array[i] = malloc(sizeof(int)*N);
}

Stack

main:
addr in heap2d_array

Heap
0 1 … M-1

addr in
heap

addr in
heap

…
addr in
heap

0
 1

 2
 …

 M
-1

0
 1

 2
 …

 M
-1

0
 1

 2
 …

 M
-1

Using 2D Array (Array of Pointers) As Parameters

Stack
main: addr in heap2d_array

Heap

parameter gets base address of rows array of int*

• its type is int** : a pointer to int*: (with buckets of int)

• pass row and column dimension values

• Can use [i][j] to index into a specific location in 2D array.

void init2D(int **arr, int rows, int cols){

int i, j;

 for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

arr[i][j] = 0;

}

}

}

addr in heaparr

init2D:

0 1 … M-1

addr in
heap

addr in
heap

…
addr in
heap

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

Using 2D Array (Array of Pointers): How about free-ing this memory?

Stack
main: addr in heap2d_array

Heap
void free(int **arr){

//TODO: decide which order to free memory

Option A: free the int ** array first

Option B: free the innner arrays (each int* array

first)

}

addr in heaparr

init2D:

0 1 … M-1

addr in
heap

addr in
heap

…
addr in
heap

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

0
 1

 2
 …

 N
-1

parameter gets base address of rows array of int*

• its type is int** -> a pointer to an array of int*->

• each int* -> a pointer to an array of ints

Two Ways for 2D Arrays

• We'll use BOTH methods in future labs:

– Lab 7:
• column-major, large chunk of memory that we treat as a 2D array,

• use arr[index] where index = i * ROWSIZE + j to deference values

– Lab 8/9:
• array of integer pointers,

• can use arr[N][M] to dereference values

Structs

• Multiple values (fields) stored together

– Defines a new type in C's type system

• Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.

Structs

Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting
address of a struct…

The id field is always at
an offset of 8 forward
from the start.

Structs

Struct fields accessible as a base + displacement
In assembly: mov reg_value, 8(reg_base)

Where:
• reg_value is a register holding the value to store (say, 12)
• reg_base is a register holding the base address of the struct

struct student{
int age;
float gpa;
int id;

};

struct student s;
s.id = 12;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting
address of a struct…

The id field is always at
an offset of 8 forward
from the start.

Structs

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:

0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:

0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:

0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …

Why do we want to align data on multiples of the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Data Alignment: Why?

• Simplify hardware

– e.g., only read ints from multiples of 4

– Don’t need to build wiring to access 4-byte chunks at any arbitrary
location in hardware

• Inefficient to load/store single value across alignment boundary (1
vs. 2 loads)

• Simplify OS:

– Prevents data from spanning virtual pages

– Atomicity issues with load/store across boundary

Structs

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

struct student{

int age;

float gpa;

int id;

};

struct student s;

Structs

struct student{

char name[11];

short age;

int id;

};

How much space do we need to store one of these structures? Why?

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

struct student{

char name[11];

short age;

int id;

};

Structs

Memory …

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating structs with
malloc()!

struct student{

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 20 bytes!

Alternative Layout

Same fields, declared in
a different order.

struct student{

char name[11];

short age;

int id;

};

Alternative Layout
Memory …

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a
day-to-day basis. Don’t go out and
rearrange all your struct declarations.

struct student{

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 17 bytes

Aside: Network Headers

• In networks, we attach metadata to packets

– Things like destination address, port #, etc.

• Common for these to be a specific size/format

– e.g., the first 20 bytes must be laid out like …

• Naïvely declaring a struct might introduce padding, violate format.

Cool, so we can get rid of this struct padding by being smart about

declarations?

A. Yes (why?)

B. No (why not?)

Cool, so we can get rid of this padding by being smart about

declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct can’t be
eliminated.

struct T1 { struct T2 {

 char c1; int x;

 char c2; char c1;

 int x; char c2;

}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x

“External” Padding

Array of Structs: Field values in each bucket must be properly
aligned:

 struct T2 arr[3];

Buckets must be on a 8-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 16

Struct field syntax…

struct student {

 int id;

 short age;

 char name[11];

};

struct student s;

s.id = 406432;

s.age = 20;

strcpy(s.name, “Alice”);

Struct is declared on
the stack.
(NOT a pointer)

Struct field syntax…

struct student {

 int id;

 short age;

 char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

Struct field syntax…

struct student {

 int id;

 short age;

 char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

Option 1: Works but ugly

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Option 2: Use struct pointer dereference!

Memory alignment applies elsewhere too!

int x; vs. double y;

char ch[5]; int x;

short s; short s;

double y; char ch[5];

In nearly all cases, you shouldn't stress about this. The compiler will figure
out where to put things.

Exceptions: networking, OS

Structs and Arrays

• Use Structs & Arrays to build complex data types

• Very important to think about type!

from the outside in: (e.g.) a[3].age
• type of a is a pointer to an array of student

• can use [i] notation to access a bucket of this array

• type of a[3] is a student struct

• can use . to access a field in struct

• type of a[3].age is an int

• Remember how different types are passed
• semantics of passing an array vs. a struct

• it is all pass by value, but what value is differs by type

Up next…

• New topic: Storage and the Memory Hierarchy

Transition

• First half of course: hardware focus

– How the hardware is constructed

– How the hardware works

– How to interact with hardware / ISA

• Up next: performance and software systems

– Memory performance

– Operating systems

– Standard libraries (strings, threads, etc.)

Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming

Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming

Suppose you’re designing a new computer architecture. Which

type of memory would you use? Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed, moderate cost

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

trade-off between capacity and speed

Classifying Memory

• Broadly, two types of memory:

1. Primary storage: CPU instructions can access any location at any time
(assuming OS permission)

2. Secondary storage: CPU can’t access this directly

Random Access Memory (RAM)

• Any location can be accessed directly by CPU

– Volatile Storage: lose power → lose contents

• Static RAM (SRAM)

– Latch-Based Memory (e.g. RS latch), 1 bit per latch

– Faster and more expensive than DRAM
• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)

– Capacitor-Based Memory, 1 bit per capacitor
• “Main memory”: Not part of CPU

Memory Technologies

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB
(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll cover
caches (SRAM) soon. Let’s look at main memory (DRAM) now.

DRAM

Memory

Chips

Bus Interface

Dynamic Random Access Memory (DRAM)

Capacitor based:

– cheaper and slower than SRAM

– capacitors are leaky (lose charge over time)

– Dynamic: value needs to be refreshed (every 10-
100ms)

Example: DIMM

(Dual In-line Memory Module):

Connecting CPU and Memory

• Components are connected by a bus:

• A bus is a collection of parallel wires that carry address, data,
and control signals.

• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

CPU Cache

A

How A Memory Read Works

(1) CPU places address A on the memory bus.

Load operation: mov (Address A), %rax

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

A

Hey memory,
please locate
the value at
address A

How A Memory Read Works

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

(2) Main Memory reads address A from memory, fetches value at
that address and puts it on the bus

Sending the
value back to
the CPU

Value

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

(3) CPU reads value from the bus, and copies it into register rax.

a copy also goes into the on-chip cache memory

How A Memory Read Works

1. CPU writes A to bus, memory reads it
2. CPU writes value to bus, memory reads it
3. Memory stores value at address A

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

value, A

How a Memory Write Works

Hey memory,
store value at
address A

Secondary Storage

• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on
secondary storage

– No way to specify a disk location in an instruction

– Operating System moves data to/from memory

Secondary Storage
Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

I/O
Controller

USB
Controller

IDE
Controller

SATA
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

path is much longer

What’s Inside A Disk Drive?
Spindle

Arm

Actuator

Platters

Controller Electronics

(includes processor & memory)
bus

connector

Image from Seagate Technology

R/W head

Data Encoded as
points of
magnetism on
Platter surfaces

Device Driver (part of OS code)

interacts with Controller to R/W to disk

Reading and Writing to Disk

disk surface
spins at a fixed
rotational rate
~7200 rotations/min

disk arm sweeps across
surface to position
read/write head over a
specific track.

Data blocks located in some Sector of some Track on some Surface
1. Disk Arm moves to correct track (seek time)
2. Wait for sector spins under R/W head (rotational latency)
3. As sector spins under head, data are Read or Written

(transfer time)
sector

Memory Technology

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk

– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

Down the hall

Across campus

To Seattle

1 ms == 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB (to Cleveland / Indianapolis)

The Memory Hierarchy

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Where does accessing the network belong?

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: Here

B: Here C: Somewhere else

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
 than local
 disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk, at
reasonable cost.

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems

	Stack Functions
	Slide 9: Today

	Function Arguments
	Slide 10: So Far: One Dimensional Arrays
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: If we declared long int matrix[5][3];, and the base of matrix is 0x3420, what is the address of matrix[3][2]? Assume sizeof(long int) = 8 bytes.
	Slide 19: If we declared long int matrix[5][3];, and the base of matrix is 0x3420, what is the address of matrix[3][2]? Assume sizeof(long int) = 8 bytes.
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: But… can’t we have pointers to pointers?
	Slide 26: But… can’t we have pointers to pointers?
	Slide 27: Dynamically Allocated 2D Array: Array of Pointers
	Slide 28: Using 2D Array (Array of Pointers) As Parameters
	Slide 29: Using 2D Array (Array of Pointers): How about free-ing this memory?
	Slide 30: Two Ways for 2D Arrays
	Slide 31: Structs
	Slide 32: Structs
	Slide 33: Structs
	Slide 34: Structs
	Slide 35: Structs
	Slide 36: Structs
	Slide 37: Data Alignment:
	Slide 38: Why do we want to align data on multiples of the data size?
	Slide 39: Data Alignment: Why?
	Slide 40: Structs
	Slide 41: Structs
	Slide 42: How much space do we need to store one of these structures? Why?
	Slide 43: Structs
	Slide 44: Alternative Layout
	Slide 45: Alternative Layout
	Slide 46: Aside: Network Headers
	Slide 47: Cool, so we can get rid of this struct padding by being smart about declarations?
	Slide 48: Cool, so we can get rid of this padding by being smart about declarations?
	Slide 49: “External” Padding
	Slide 50: Struct field syntax…
	Slide 51: Struct field syntax…
	Slide 52: Struct field syntax…
	Slide 53: Memory alignment applies elsewhere too!
	Slide 54: Structs and Arrays
	Slide 55: Up next…
	Slide 56: Transition
	Slide 57: Efficiency
	Slide 58: Efficiency
	Slide 59: Suppose you’re designing a new computer architecture. Which type of memory would you use? Why?
	Slide 60: Classifying Memory
	Slide 61: Random Access Memory (RAM)
	Slide 62: Memory Technologies
	Slide 63: Dynamic Random Access Memory (DRAM)
	Slide 64: Connecting CPU and Memory
	Slide 65: How A Memory Read Works
	Slide 66: How A Memory Read Works
	Slide 67: How A Memory Read Works
	Slide 68: How a Memory Write Works
	Slide 69: Secondary Storage
	Slide 70: Secondary Storage
	Slide 71
	Slide 72: Reading and Writing to Disk
	Slide 73: Memory Technology
	Slide 74: The Memory Hierarchy
	Slide 75: Where does accessing the network belong?
	Slide 76: The Memory Hierarchy
	Slide 77: Abstraction Goal

