
CS 31: Introduction to Computer Systems

14: Arrays and Structs
03-18-2025



Four Types of Assembly Instructions

1. Arithmetic: use ALU to compute a value

2. Data movement: load and store

3. Control Flow: branch, jump, etc.

4. Stack Instructions: push and pop stack frames

– Shortcut instructions for common operations (we’ll cover these in detail 
later)



Overview

• Stack data structure, applied to memory

• Behavior of function calls

• Storage of function data, at assembly level



“A” Stack

• A stack is a basic data structure

– Last in, first out behavior (LIFO)

– Two operations
• Push (add item to top of stack)

• Pop (remove item from top of stack)

Oldest data

Newest data

Push (add data item)

Pop (remove and return item)



“The” Stack

• Apply stack data structure to memory

– Store local (automatic) variables

– Maintain state for functions (e.g., where to return)

• Organized into units called frames

– One frame represents all of the information for one function.

– Sometimes called activation records



Memory Model

• Starts at the highest memory
addresses, grows into lower
addresses.

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap



What is responsible for creating and removing stack frames?

A. The user

B. The compiler

C. C library code

D. The operating system

E. Something / someone else

Insight: EVERY function needs a stack frame.  
Creating / destroying a stack frame is a 
(mostly) generic procedure.



What is responsible for creating and removing stack frames?

A. The user

B. The compiler

C. C library code

D. The operating system

E. Something / someone else

Insight: EVERY function needs a stack frame.  
Creating / destroying a stack frame is a 
(mostly) generic procedure.



Local Variables

Compiler can allocate N bytes on the stack by subtracting N from the stack 
pointer: (rsp)

Current Stack 
Frame

Current Stack 
Frame

N bytes

New variable 

rsp

rsp-N



Stack Frame Location

Where in memory is the current stack frame?

main

0xFFFFFFFF

function 1

function 2

current top of the 
stack

current bottom 
of the stack



Recall: x86_64 Register Conventions

• Working memory for currently 
executing program
– Address of next instruction to 

execute ( %rip )

– Location of runtime stack
(%rbp, %rsp )

– Temporary data
( %rax - %r15 )

– Status of recent ALU tests
( CF, ZF, SF, OF )

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes 
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15



Stack Frame Location

• Compiler ensures that this invariant 
holds.

• This is why all local variables we’ve seen
in assembly are relative
to rbp or rsp!

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

main

0xFFFFFFFF

function 1

function 2

rsp

rbp



How would we implement pushing x to the top of the stack in 

x86_64?

A. Increment rsp
Store x at (rsp)

B. Store x at (rsp)
Increment rsp

C. Decrement rsp
Store x at (rsp)

D. Store x at (rsp)
Decrement rsp

E. Copy rsp to rbp
Store x at rbp

X goes here

main

0xFFFFFFFF

function 1

function 2

rsp
(top of the stack)

rbp
(bottom of stack 

frame)

Lo
w

er
 M

em
. A

dd
re

ss
es



How would we implement pushing x to the top of the stack in 

x86_64?

A. Increment rsp
Store x at (rsp)

B. Store x at (rsp)
Increment rsp

C. Decrement rsp
Store x at (rsp)

D. Store x at (rsp)
Decrement rsp

E. Copy rsp to rbp
Store x at rbp

X goes here

main

0xFFFFFFFF

function 1

function 2

rsp
(top of the stack)

rbp
(bottom of stack 

frame)

Lo
w

er
 M

em
. A

dd
re

ss
es



Local Variables

• Generally, we can make space on the stack for N bytes by:

– subtracting N from rsp

New variable of 
N bytes

Current Stack Frame

rsp

rbp

Current Stack Frame

rsp

rbp

N bytes



Local Variables

• When we’re done, free the space by adding N back to rsp

– rsp + N

New variable of 
N bytes

Current Stack Frame

rsp

rbp

Current Stack Frame

rsp

rbp

N bytes



Stack Frame Contents

main

0xFFFFFFFF

function 1

function 2

rsp

rbp

Lo
w

er
 M

em
. A

d
d

re
ss

es

What needs to be stored in a stack frame? What must a function know?

• Local variables

• Previous stack frame base address

• Function arguments

• Return value

• Return address

• Saved registers

• Spilled temporaries



Stack Frame Relationships

• If function 1 calls function 2:

– function 1 is the caller

– function 2 is the callee

• With respect to main:

– main is the caller

– function 1 is the callee

main

0xFFFFFFFF

function 1

function 2

rsp

rbp

Lo
w

er
 M

em
. A

d
d

re
ss

es

caller: when f1 calls f2 

callee: when f1 calls f2

caller: when main calls f1

callee: when main calls f1



Where should we store the following stuff?

A. In registers

B. On the heap

C. In the caller’s stack frame

D. In the callee’s stack frame

E. Somewhere else

Previous stack frame base address
Function arguments
Return value
Return address



Calling Convention

• You could store this stuff wherever you want!

– The hardware does NOT care.

– What matters: everyone agrees on where to find the necessary data.

• Calling convention: agreed upon system for exchanging data between 
caller and callee

• When possible, keep values in registers (why?)

– Accessing registers is faster than memory (stack)



x86_64 Calling Convention

• The function’s return value: In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)





x86_64 Calling Convention

• The function’s return value: In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)



Return Value

• If the callee function produces a result, the caller can find it in %rax

• We saw this when we wrote our function in the weekly lab last friday

– Copy the result to %rax before we finishing up



Dynamic Stack Accounting

• Dedicate CPU registers for stack bookkeeping

– %rsp (stack pointer): Top of current stack frame

– %rbp (frame pointer): Base of current stack 

frame

• Compiler maintains these pointers

– Does the compiler know the exact address they 

point to? 

– Compiler doesn’t know or care! (job of the OS to 

figure that out)

• To the compiler: every variable access is relative 

to %rsp and %rbp!

current stack 
frame

…

rsp

rbp



Compiler: updates to rsp/rbp on function call/return

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

current stack 
frame

…

rsp

rbp



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp
caller’s %rbp value

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp

3. Subtract N from %rsp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp

3. Subtract N from %rsp

caller’s %rbp value

callee stack frame 

rsp

rbp

Callee can 
now execute.



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp

caller’s %rbp value

callee stack frame 

rsp

rbp



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp (callee stack frame no longer exists)

caller’s %rbp value

callee stack frame 

rsp

rbp



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp (callee stack frame no longer exists)

2. pop %rbp

caller’s %rbp value

callee stack frame 

rsp

rbp



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp 

2. pop %rbp 
-  pop caller’s rbp off the stack and set it to the value of rbp

- decrement rsp

caller’s %rbp value

callee stack frame 

rsp

rbp

X86_64 has another convenience 
instruction for this: leaveq



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp 

2. pop %rbp 
-  pop caller’s rbp off the stack and set it to the value of rbp

- decrement rsp

rsp

rbp

Back to where 
we started



x86 Calling Conventions: Function Call

Initial state

caller stack frame

…

rsp

rbp

caller stack frame 

…

caller’s %rbp value

push %rbp (store caller’s base pointer)

caller stack frame 

…

caller’s %rbp value

callee

callee

mov %rsp, %rbp
(establish callee’s frame pointer)

caller stack frame 

…

caller’s %rbp value

callee stack frame 

sub $SIZE, %rsp
(allocate space for callee’s locals)

rsp

rbp

rsp

rbp

rsp

rbp



x86 Calling Conventions: Function Return

x86_64 provides a convenience 
instruction that does all of this:
leaveq

caller stack frame 

…

caller’s %rbp value

callee stack frame 

we want to restore the caller’s frame

rsp

rbp caller stack frame 

…

caller’s %rbp value

callee

mov %rbp, %rsp
(restore caller’s stack pointer)

rsp

rbp

caller stack frame

…

rsp

rbp

pop %rbp (restore caller’s frame pointer)



x86_64 Calling Convention

• The function’s return value:
– In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)



Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

callq funcB

… 

funcB:

push %rbp

mov %rsp, %rbp

…

Function A

Function B

…



Program Counter

Program 
Counter (PC)

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Text Memory Region
Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

add $5, %rcx



Program Counter

Program 
Counter (PC)

Text Memory Region
Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

add $5, %rcx

Update PC to next instruction.

Execute the addl.

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Program Counter

Program 
Counter (PC)

Text Memory Region
Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.) funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

What do we do now?

Follow PC, fetch instruction:

mov $rcx, -8(%rbp)



Program Counter

Program 
Counter (PC)

Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

mov $rcx, -8(%rbp)

Update PC to next instruction.

Execute the mov.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Program Counter

Program 
Counter (PC)

Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Keep executing in a straight line 
downwards like this until:

We hit a jump instruction.
We call a function.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Jump

• On a (non-function call) jump:

– Check condition codes

– Set PC to execute elsewhere (usually not the next instruction)

• Do we ever need to go back to the instruction after the jump?

Maybe (and if so, we’d have a label to jump back to), but usually not.



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce 
result (stored in %rax).

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce 
result (stored in %rax).

Restore function A’s stack.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Return:
Go back to what we were doing 
before funcB started.

Unlike jumping, we intend to go back!

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Like push, pop, and leave, call and ret are 
convenience instructions. What should they do to support the 
PC-changing behavior we need?  (The PC is %rip.)

call

In words:

In instructions:

ret

In words:

In instructions:



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory RegionExecuting instruction:
callq funcB

PC points to next instruction

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

1. push %rip funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

1. push %rip
2. jump funcB
3. (execute funcB)

Function B

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop prev. %rip on stack

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

6. (resume funcA) funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Recap: PC upon a Function Call

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop prev. %rip on stack
6. (resume funcA)

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop prev. %rip on 

stack
6. (resume funcA)

callq

leaveq

retq

Return address:

Address of the instruction we should 
jump back to when we finish (return 
from) the currently executing function.

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



x86_64 Stack / Function Call Instructions

push
Create space on the stack and place 
the source there.

sub $8, %rsp

mov src, (%rsp)

pop
Remove the top item off the stack and 
store it at the destination.

mov (%rsp), dst

add $8, %rsp

callq
1. Push return address on stack 

 2. Jump to start of function

push %rip

jmp target

leaveq
Prepare the stack for return
(restoring caller’s stack frame)

mov %rbp, %rsp

pop %rbp

retq

Return to the caller, PC  saved PC
(pop return address off the stack into 
PC (rip))

pop %rip



x86_64 Calling Convention

• The function’s return value:
– In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)



Function Arguments

• Most functions don’t receive more than 6 arguments, so x86_64 can 
simply use registers most of the time.

• If we do have more than 6 arguments though (e.g., perhaps a printf 
with lots of placeholders), we can’t fit them all in registers.

• In that case, we need to store the extra arguments on the stack.
By convention, they go in the caller’s stack frame.



If we need to place arguments in the caller’s stack frame, should they go 

above or below the return address?

A. Above

B. Below

C. It doesn’t matter

D. Somewhere else
Caller

…

Return Address

Callee

Above

Below



If we need to place arguments in the caller’s stack frame, should they go 

above or below the return address?

A. Above

B. Below

C. It doesn’t matter

D. Somewhere else
Caller

…

Return Address

Callee

Above

Below



x86_64 Stack / Function Call Instructions

push
Create space on the stack and place 
the source there.

sub $8, %rsp

mov src, (%rsp)

pop
Remove the top item off the stack and 
store it at the destination.

mov (%rsp), dst

add $8, %rsp

callq
1. Push return address on stack 

 2. Jump to start of function

push %rip

jmp target

leaveq
Prepare the stack for return
(restoring caller’s stack frame)

mov %rbp, %rsp

pop %rbp

retq

Return to the caller, PC  saved PC
(pop return address off the stack into 
PC (rip))

pop %rip



Arguments

• Extra arguments to the callee are stored just underneath the return 
address.

• Does it matter what order
we store the arguments in?

• Not really, as long as
we’re consistent
(follow conventions).

Caller

…

Return Address

Callee

Callee Arguments

This is why arguments can be 
found at positive offsets relative 
to %rbp.

rsp

rbp





Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2



Saving Registers

• Registers are a relatively scarce resource, but they’re fast to access. Memory 
is plentiful, but slower to access.

• Should the caller save its registers to free them up for the callee to use?

• Should the callee save the registers in case the caller was using them?

• Who needs more registers for temporary calculations, the caller or callee?

• Clearly the answers depend on what the functions do…



Splitting the difference…

• We can’t know the answers to those questions in advance…

• Divide registers into two groups:

Caller-saved: %rax, %rdi, %rsi, %rdx, %rcx, %r8, %r9, 
%r10, %r11

Caller must save them prior to calling callee
callee free to trash these, 
Caller will restore if needed

Callee-saved: %rbx, %r12, %r13, %r14, %r15
Callee must save them first, and restore 
them before returning
Caller can assume these will be preserved



Running Out of Registers

• Some computations require more than 16 general-purpose registers to 
store temporary values.

• Register spilling: The compiler will move some temporary values to 
memory, if necessary.

– Values pushed onto stack, popped off later

– No explicit variable declared by user

– This is getting to the limits of CS 31!
• – take CS 75 (compilers) for more details.



Today on CS31

How 1D arrays are stored in memory & accessed:

• In C and Assembly

• Static vs. Dynamic 

How complex structures are stored in memory & accessed:

• 2D arrays

– Static vs. Dynamic

– One contiguous block of memory vs. array of arrays

• Structs



So far: Primitive Data Types

• We’ve been using ints, floats, chars, pointers

• Simple to place these in memory:

– They have an unambiguous size

– They fit inside a register*

– The hardware can operate on them directly

(*There are special registers for floats and doubles that use the IEEE 
floating point format.)



Composite Data Types

• Combination of one or more existing types into a new type.  (e.g., an array of 
multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item (pointer)

struct queue_node{

  int value;

  struct queue_node *next;

}



Recall: Arrays in Memory

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));



Base + Offset

• We know that arrays act as a pointer to the first element.  For bucket 
[N], we just skip forward N.

0th bucket 1st bucket 2nd bucket 3rd bucket 4th bucket

val[0] val[1] val[2] val[3] val[4]

int val[5];



Base + Offset

• We know that arrays act as a pointer to the first element.  For bucket 
[N], we just skip forward N.

Base Offset (stuff in [])

This is why we start counting from zero!
Skipping forward with an offset of zero ([0]) gives us the first bucket…

0th bucket 1st bucket 2nd bucket 3rd bucket 4th bucket

val[0] val[1] val[2] val[3] val[4]

int val[5];



Which expression would compute the address of 

iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]



Which expression would compute the address of 

iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

What if this isn’t known at 
compile time?



Recall Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.

– Put the address in a register.

– Access the register with () around the register’s name.

mov (%rcx), %rax

– Use the address in register %rcx to access memory, store result in 
register %rax



Recall Addressing Mode: Displacement

• Like memory mode, but with a constant offset

– Offset is often negative, relative to %rbp

mov -24(%rbp), %rax

– Take the address in %rbp, subtract 24 from it, index into memory and store 
the result in %rax.



Addressing Mode: Indexed

• Instead of only using one register to store the base address of a memory 
address, we can use a base address register and an offset register value.

mov (%rax, %rcx), %rdx

– Take the base address in %rax, add the value in %rcx to produce a final 
address, index into memory and store the result in %rdx.



Addressing Mode: Indexed

Instead of only using one register to store the base address of a memory 
address, we can use a base address register and an offset register value.

mov (%rax, %rcx), %rdx

– Take the base address: %rax, 

– add the value in %rcx: %rax + %rcx 

– index into memory and store the result in %rdx.

One register to keep 
track of base address.

One register to keep track 
of offset from base address.



Addressing Mode: Indexed

The offset (%rcx) can also be scaled by a constant.

mov (%rax, %rcx, 4), %rdx

– Take the base address: %rax 

– Multiply the offset by the scale: %rcx * 4

– Add the scaled offset to the base: %rax + %rcx * 4

– Now, index into memory at (%rax + %rcx * 4)  and store the result in %rdx.

One register to keep 
track of base address.

One register to keep track 
of offset from base address.

Scale Constant



Assembly Reference

This mode has been on your assembly reference sheet all along!



Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Let’s try an example

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

each int 
takes up 4 
bytes 

Suppose:

int *iptr = malloc(4*sizeof(int)); 
//iptr is stored in register %rax.

 int i=2; is stored at %rbp-8 

C code says:

iptr[i] = 9;

Using what we just learnt, what does the C code 
above translate to, in assembly?



Suppose:

 int iptr = malloc(4*sizeof(int)); 
//iptr is stored in register %rax.

 int i=2; is stored at %rbp-8 

C code says:

iptr[i] = 9;

Using what we just learnt, what does the C code 
above translate to, in assembly?

mov -8(%rbp), %rcx

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Let’s try an example

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

each int 
takes up 4 
bytes 



Suppose:

 int iptr = malloc(4*sizeof(int)); 
//iptr is stored in register %rax.

 int i=2; is stored at %rbp-8 

C code says:

iptr[i] = 9;

Using what we just learnt, what does the C code 
above translate to, in assembly?

mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Let’s try an example

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address



Suppose:

 int iptr; is stored in register %rax.

 int i=2; is stored at %rbp-8 

 iptr[i] = 9; //iptr[2] = 9;

In assembly:

mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Let’s try an example

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8



Suppose:

 int iptr; is stored in register %rax.

 int i=2; is stored at %rbp-8 

 iptr[i] = 9; //iptr[2] = 9;

In assembly:

mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Let’s try an example

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8



Suppose:

 int iptr; is stored in register %rax.

 int i=3; is stored at %rbp-8 

 iptr[i] = 10; //iptr[3] = 10;

In assembly:

mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

What happens when we increment i?

What changes do we make in assembly?

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8



Suppose:

 int iptr; is stored in register %rax.

 int i=3; is stored at %rbp-8 

 iptr[i] = 10; //iptr[3] = 10;

In assembly:

mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824:            iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

What happens when we increment i?

What changes do we make in assembly?

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8

From here, if the program increments i 
(e.g., in a loop) and accesses the array at 

the new (incremented) position of i:

Compiler can simply increment register 
rcx and access the next element of the 
array with the same mov command!



So Far: One Dimensional Arrays

• We are not restricted to an array of ints..
How about an array of arrays of ints?

    

                        “Give me three sets of four integers”

             int twodims[3][4];

    

• How should these be organized in memory?



Declaring Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

#define R 3

#define C 4 

int  matrix[R][C] , i, j;

for(i=0; i<R; i++) {

  for(j=0; j<C; j++) {

     matrix[i][j] = i+j;

   }

}

matrix

• Declare with row and column dimension
• Can use matrix[i][j] to index



Memory Layout of Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

matrix

Row Major Order in C:
all Row 0 buckets, followed by
all Row 1 buckets, followed by
all Row 2 buckets, …

Row 0

Row 1

Row 2



Using Static 2D Arrays as Parameters
• 2D array parameter must specify column dimension

• Why? Compiler needs the column dimension to calculate offset from base address

 in memory of bucket [i][j] 

• Row dimension passed as 2nd parameter to make function more generic 

• function can be passed any 2D array with same column dimension

void foo(int matrix[][C], int rows){

   int i, j;

   for(i=0; i < rows; i++) {

    for(j=0; j< C; j++) {

       matrix[i][j] = i*j;

    }

   }

}

#define R  3

#define C  4 

int main() {

  int arr[R][C];

  int grid[100][C];

  foo(arr,  R);

  foo(grid, 100);



Offset of matrix[row][col] from base?

                    = row * MAX_COL + col 

Calculating Offset for Static 2D Arrays

C cols

0 1 2 … C-1

R 0

rows 1

…

R-1

matrix

TIP: MAX_COL = how big each row is = max number of columns!



Offset of matrix[row][col] from base?

= row * MAX_COL + col 

Calculating Offset for Static 2D Arrays

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

matrix

E.g., location of matrix[1][3]?

 = base + (1 * MAX_COL + 3) buckets
 = base + (1 * 4 + 3) buckets
 = base + 7 buckets 

// skip 1 full row and 3 buckets

// skip 7 buckets



Offset of matrix[row][col] from base?

= row * MAX_COL + col 

Calculating Offset for Static 2D Arrays

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]   offset 1

0x9240: 2 [0][2]   2

0x9248: 3 [0][3]   3

0x9250: 1 [1][0]   4

0x9258: 2 [1][1]   5

0x9260: 3 [1][2]   6

0x9268: 4 [1][3]   offset 7

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

matrix

E.g., location of matrix[1][3]?

 = base + (1 * MAX_COL + 3) buckets
 = base + (1 * 4 + 3) buckets
 = base + 7 buckets 

7 buckets 



Address of matrix[row][col] from base?

= base address + row * MAX_COL*SIZE + col*SIZE 

Calculating Address for Static 2D Arrays

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]   offset 1

0x9240: 2 [0][2]   2

0x9248: 3 [0][3]   3

0x9250: 1 [1][0]   4

0x9258: 2 [1][1]   5

0x9260: 3 [1][2]   6

0x9268: 4 [1][3]   offset 7

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

index

SIZE

E.g., address of matrix[1][3]? Assume SIZE of bucket is 8 bytes

 = base addr. + (1 * MAX_COL *SIZE + 3*SIZE) bytes

 = base addr. + (1 * 4 * 8 + 3 * 8) bytes
 = base addr. + (32 + 24) bytes
 = base addr. + 0x38 ➔ 0x9320 + 0x38 = 0x9268 

0x38 
bytes 



If we declared long int matrix[5][3];, and the base of 

matrix is 0x3420, what is the address of matrix[3][2]? 
Assume sizeof(long int) = 8 bytes.

A. 0x3488

B. 0x3470

C. 0x3478

D. 0x344C

E. None of these

address = base address + row * MAX_COL *SIZE + col*SIZE 



If we declared long int matrix[5][3];, and the base of 

matrix is 0x3420, what is the address of matrix[3][2]? 
Assume sizeof(long int) = 8 bytes.

A. 0x3488

B. 0x3470

C. 0x3478

D. 0x344C

E. None of these

address = base address + row * MAX_COL *SIZE + col*SIZE 



• Given the row-major order layout, a 
"two-dimensional array" is still just a
contiguous block of memory:

      The malloc function just needs to 
      return… a pointer to a contiguous 
      block of memory! That is, you
      only need one call to malloc.

Dynamically Allocating 2D Arrays: Contiguous Memory

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2



Caveat: the C compiler doesn't know that you're 
planning to use this block of memory with more 

than one index (i.e., row and column).

Can't access: matrix[i][j]!

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

For this example, with three 
rows and four columns:

long int * matrix = malloc(3 * 4 * sizeof (long int));

Dynamically Allocating 2D Arrays: Contiguous Memory



2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

Row 0

Row 1

Row 2

C cols

0 1 2 3

R 0 0 1 2 3

rows 1 1 2 3 4

2 2 3 4 5

For this example, with three 
rows and four columns:

To access  matrix[i][j], compute the offset 
manually:

index = i * COL_MAX + j;

matrix[index] = …

Dynamically Allocating 2D Arrays: Contiguous Memory

long int * matrix = malloc(3 * 4 * sizeof (long int));



Using Dynamically Allocated 2D Arrays as Parameters

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

   int i, j;

   for(i=0; i < rows; i++) {

        for(j=0; j< cols; j++) {

            matrix[i*cols + j] = i*j;

    }

   }

}

int main() {

   long int *2d_arr = malloc(3 * 4 * sizeof(long int));

   dy2D(2d_arr, 3, 4);

}



Using Dynamically Allocated 2D Arrays as Parameters

Stack 

main: 

Heap 

dy2D: 

2D mapping:

0x9230: 0 [0][0] : matrix

0x9238: 1 [0][1]

0x9240: 2 [0][2]

0x9248: 3 [0][3]

0x9250: 1 [1][0]

0x9258: 2 [1][1]

0x9260: 3 [1][2]

0x9268: 4 [1][3]

0x9270: 2 [2][0]

0x9278: 3 [2][1]

0x9280: 4 [2][2]

0x9288: 5 [2][3]

… …

addr in heap2d_arr

addr in heapmatrix

• Parameter gets base address of contiguous memory in Heap

• Just like 1D arrays (almost). Why? It’s just a pointer to a contiguous block
of memory, only we (the programmer) know it represents a 2D array

• Pass row and column dimensions

void dy2D(int *matrix, int rows, int cols){

   int i, j;

   for(i=0; i < rows; i++) {

        for(j=0; j< cols; j++) {

            matrix[i*cols + j] = i*j;

    }

   }

}

int main() {

   long int *2d_arr = malloc(3 * 4 * sizeof(long int));

   dy2D(2d_arr, 3, 4);

}



But… can’t we have pointers to pointers?

• If we want a dynamic array of ints:

– declare int *array = malloc(N * sizeof(int))

– Treat this internally as a 2D array (i*COL + j)

• If we want an array of int pointers:

– declare int **array = malloc(…)

– For each pointer, dynamically allocate an array



But… can’t we have pointers to pointers?

• If we want a dynamic array of ints:

– declare int *array = malloc(N * sizeof(int))

– Treat this internally as a 2D array (i*COL + j)

• If we want an array of int pointers:

– declare int **array = malloc(…)

– For each pointer, dynamically allocate an array

– The type of array[0], array[1], etc. is:  int *

– For each one of those, we can malloc an array of ints:

• array[0] = malloc(M * sizeof(int))



Dynamically Allocated 2D Array: Array of Pointers

• One malloc for an array of rows:    an array of int*

• N mallocs for each row's column values:  arrays of int

– variable type is int**

– stores address of rows array: an array of int*

int ** 2d_array;

// allocate a row of int pointers 

2d_array = malloc (sizeof(int *) *M);

// for each int pointer in the row, 
// allocate an array

for(i=0; i < M; i++) {
  2d_array[i] = malloc(sizeof(int)*N);
}

Stack 

main: 
addr in heap2d_array

Heap 
0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                M
-1

0
   1

    2
      …

                M
-1

0
   1

    2
      …

                M
-1



Using 2D Array (Array of Pointers) As Parameters

Stack 
main: addr in heap2d_array

Heap 

parameter gets base address of rows array of int* 

• its type is int** : a pointer to int*: (with buckets of int)

• pass row and column dimension values

• Can use [i][j] to index into a specific location in 2D array.

void init2D(int **arr, int rows, int cols){

int i, j;

    for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

arr[i][j] = 0;

}

}

}

addr in heaparr

init2D: 

0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                N
-1

0
   1

    2
      …

                N
-1

0
   1

    2
      …

               N
-1



Using 2D Array (Array of Pointers): How about free-ing this memory?

Stack 
main: addr in heap2d_array

Heap 
void free(int **arr){

//TODO: decide which order to free memory

Option A: free the int ** array first

Option B: free the innner arrays (each int* array 

first)

}

addr in heaparr

init2D: 

0                   1              …              M-1

addr in 
heap

addr in 
heap

…          
addr in 
heap

0
   1

    2
      …

                N
-1

0
   1

    2
      …

                N
-1

0
   1

    2
      …

               N
-1

parameter gets base address of rows array of int* 

• its type is int** -> a pointer to an array of int*-> 

• each  int* -> a pointer to an array of ints



Two Ways for 2D Arrays

• We'll use BOTH methods in future labs:

– Lab 7: 
• column-major, large chunk of memory that we treat as a 2D array,

• use arr[index] where index = i * ROWSIZE + j to deference values

– Lab 8/9: 
• array of integer pointers, 

• can use arr[N][M] to dereference values



Structs

• Multiple values (fields) stored together

– Defines a new type in C's type system

• Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.



Structs

Laid out contiguously by field (with a caveat we'll see later)

– In order of field declaration.

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Structs

Struct fields accessible as a base + displacement

– Compiler knows (constant) displacement of each field

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting 
address of a struct…

The id field is always at 
an offset of 8 forward 
from the start.



Structs

Struct fields accessible as a base + displacement
In assembly: mov reg_value, 8(reg_base)

Where:
• reg_value is a register holding the value to store (say, 12)
• reg_base is a register holding the base address of the struct

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;
s.id = 12;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting 
address of a struct…

The id field is always at 
an offset of 8 forward 
from the start.



Structs

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…



Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:

0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:

0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:

0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …



Why do we want to align data on multiples of the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.



Data Alignment: Why?

• Simplify hardware

– e.g., only read ints from multiples of 4

– Don’t need to build wiring to access 4-byte chunks at any arbitrary 
location in hardware

• Inefficient to load/store single value across alignment boundary (1 
vs. 2 loads)

• Simplify OS:

– Prevents data from spanning virtual pages

– Atomicity issues with load/store across boundary



Structs

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

• Laid out contiguously by field

– In order of field declaration.

– May require some padding, for alignment.

struct student{                

int age; 

float gpa; 

int id; 

};

struct student s;



Structs

struct student{                

char name[11];

short age;

int id;

};



How much space do we need to store one of these structures?  Why?

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

struct student{                

char name[11];

short age;

int id;

};



Structs

Memory …   

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating structs with 
malloc()!

struct student{                

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 20 bytes!



Alternative Layout

Same fields, declared in 
a different order.

struct student{                

char name[11];

short age;

int id;

};



Alternative Layout
Memory …   

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a 
day-to-day basis.  Don’t go out and 
rearrange all your struct declarations.

struct student{                

char name[11];

short age;

int id;

};

size of data: 17 bytes

size of struct: 17 bytes



Aside: Network Headers

• In networks, we attach metadata to packets

– Things like destination address, port #, etc.

• Common for these to be a specific size/format

– e.g., the first 20 bytes must be laid out like …

• Naïvely declaring a struct might introduce padding, violate format.



Cool, so we can get rid of this struct padding by being smart about 

declarations?

A. Yes (why?)

B. No (why not?)



Cool, so we can get rid of this padding by being smart about 

declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct can’t be 
eliminated.

struct T1 {     struct T2 {

    char c1;      int x;

    char c2;          char c1;

    int  x;              char c2;

};        };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x



“External” Padding

Array of Structs: Field values in each bucket must be properly 
aligned:

   struct T2 arr[3];

Buckets must be on a 8-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 16



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student s;

s.id = 406432;

s.age = 20;

strcpy(s.name, “Alice”);

Struct is declared on 
the stack.
(NOT a pointer)



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?



Struct field syntax…

struct student {

  int id;

  short age;

  char name[11];

};

struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

Option 1: Works but ugly

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Option 2: Use struct pointer dereference!



Memory alignment applies elsewhere too!

int x;         vs.     double y;

char ch[5];            int x;

short s;               short s;

double y;              char ch[5];

In nearly all cases, you shouldn't stress about this.  The compiler will figure 
out where to put things.

Exceptions: networking, OS



Structs and Arrays

• Use Structs & Arrays to build complex data types

• Very important to think about type!

from the outside in:  (e.g.)  a[3].age
• type of a is a pointer to an array of student

• can use [i] notation to access a bucket of this array

• type of a[3] is a student struct

• can use . to access a field in struct

• type of a[3].age is an int

• Remember how different types are passed
• semantics of passing an array vs. a struct

• it is all pass by value, but what value is differs by type


	Default Section
	Slide 1: CS 31: Introduction to Computer Systems

	Stack Functions
	Slide 8: Four Types of Assembly Instructions
	Slide 9: Overview
	Slide 10: “A” Stack
	Slide 11: “The” Stack
	Slide 12: Memory Model
	Slide 13: What is responsible for creating and removing stack frames?
	Slide 14: What is responsible for creating and removing stack frames?
	Slide 15: Local Variables
	Slide 16: Stack Frame Location
	Slide 17: Recall: x86_64 Register Conventions
	Slide 18: Stack Frame Location
	Slide 19: How would we implement pushing x to the top of the stack in x86_64?
	Slide 20: How would we implement pushing x to the top of the stack in x86_64?
	Slide 21: Local Variables
	Slide 22: Local Variables
	Slide 23: Stack Frame Contents
	Slide 24: Stack Frame Relationships
	Slide 25: Where should we store the following stuff?
	Slide 26: Calling Convention
	Slide 27: x86_64 Calling Convention
	Slide 28
	Slide 29: x86_64 Calling Convention
	Slide 30: Return Value

	Dynamic Stack Accounting
	Slide 31: Dynamic Stack Accounting
	Slide 32: Compiler: updates to rsp/rbp on function call/return
	Slide 33: Compiler: Upon a new Function Call..
	Slide 34: Compiler: Upon a new Function Call..
	Slide 35: Compiler: Upon a new Function Call..
	Slide 36: Compiler: Upon a new Function Call..
	Slide 37: Compiler: Upon a new Function Call..
	Slide 38: Compiler: Upon a new Function Call..
	Slide 39: Compiler: Returning from a function call..
	Slide 40: Compiler: Returning from a function call..
	Slide 41: Compiler: Returning from a function call..
	Slide 42: Compiler: Returning from a function call..
	Slide 43: Compiler: Returning from a function call..
	Slide 44: x86 Calling Conventions: Function Call
	Slide 45: x86 Calling Conventions: Function Return

	Program Counter
	Slide 46: x86_64 Calling Convention
	Slide 47: Instructions in Memory
	Slide 48: Program Counter
	Slide 49: Program Counter
	Slide 50: Program Counter
	Slide 51: Program Counter
	Slide 52: Program Counter
	Slide 53: Changing the PC: Jump
	Slide 54: Changing the PC: Functions
	Slide 55: Changing the PC: Functions
	Slide 56: Changing the PC: Functions
	Slide 57: Changing the PC: Functions
	Slide 58: Changing the PC: Functions
	Slide 59: Like push, pop, and leave, call and ret are convenience instructions. What should they do to support the PC-changing behavior we need?  (The PC is %rip.)
	Slide 60: Functions and the Stack
	Slide 61: Functions and the Stack
	Slide 62: Functions and the Stack
	Slide 63: Functions and the Stack
	Slide 64: Functions and the Stack
	Slide 65: Recap: PC upon a Function Call
	Slide 66: Functions and the Stack
	Slide 67: x86_64 Stack / Function Call Instructions

	Function Arguments
	Slide 68: x86_64 Calling Convention
	Slide 69: Function Arguments
	Slide 70: If we need to place arguments in the caller’s stack frame, should they go above or below the return address?
	Slide 71: If we need to place arguments in the caller’s stack frame, should they go above or below the return address?
	Slide 72: x86_64 Stack / Function Call Instructions
	Slide 73: Arguments
	Slide 74
	Slide 75: Stack Frame Contents
	Slide 76: Saving Registers
	Slide 77: Splitting the difference…
	Slide 78: Running Out of Registers
	Slide 79: Today on CS31
	Slide 80: So far: Primitive Data Types
	Slide 81: Composite Data Types
	Slide 82: Recall: Arrays in Memory
	Slide 83: Base + Offset
	Slide 84: Base + Offset
	Slide 85: Which expression would compute the address of iptr[3]?
	Slide 86: Which expression would compute the address of iptr[3]?
	Slide 87: Recall Addressing Mode: Memory
	Slide 88: Recall Addressing Mode: Displacement
	Slide 89: Addressing Mode: Indexed
	Slide 90: Addressing Mode: Indexed
	Slide 91: Addressing Mode: Indexed
	Slide 92: Assembly Reference
	Slide 93: Let’s try an example
	Slide 94: Let’s try an example
	Slide 95: Let’s try an example
	Slide 96: Let’s try an example
	Slide 97: Let’s try an example
	Slide 98: What happens when we increment i? What changes do we make in assembly?
	Slide 99: What happens when we increment i? What changes do we make in assembly?
	Slide 100: So Far: One Dimensional Arrays
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: If we declared long int matrix[5][3];, and the base of matrix is 0x3420, what is the address of matrix[3][2]? Assume sizeof(long int) = 8 bytes.
	Slide 109: If we declared long int matrix[5][3];, and the base of matrix is 0x3420, what is the address of matrix[3][2]? Assume sizeof(long int) = 8 bytes.
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115: But… can’t we have pointers to pointers?
	Slide 116: But… can’t we have pointers to pointers?
	Slide 117: Dynamically Allocated 2D Array: Array of Pointers
	Slide 118: Using 2D Array (Array of Pointers) As Parameters
	Slide 119: Using 2D Array (Array of Pointers): How about free-ing this memory?
	Slide 120: Two Ways for 2D Arrays
	Slide 121: Structs
	Slide 122: Structs
	Slide 123: Structs
	Slide 124: Structs
	Slide 125: Structs
	Slide 126: Structs
	Slide 127: Data Alignment:
	Slide 128: Why do we want to align data on multiples of the data size?
	Slide 129: Data Alignment: Why?
	Slide 130: Structs
	Slide 131: Structs
	Slide 132: How much space do we need to store one of these structures?  Why?
	Slide 133: Structs
	Slide 134: Alternative Layout
	Slide 135: Alternative Layout
	Slide 136: Aside: Network Headers
	Slide 137: Cool, so we can get rid of this struct padding by being smart about declarations?
	Slide 138: Cool, so we can get rid of this padding by being smart about declarations?
	Slide 139: “External” Padding
	Slide 140: Struct field syntax…
	Slide 141: Struct field syntax…
	Slide 142: Struct field syntax…
	Slide 143: Memory alignment applies elsewhere too!
	Slide 144: Structs and Arrays


