
CS 31: Introduction to Computer Systems

12-13: Assembly Arithmetic and Control 
03-04-2025  - 03-05-2025



Announcements

• New HW Groups Posted!

• Clicker scores up on Github. 



Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1.  hold down power button until 

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success



What we will learn this week

1. Instruction set architecture (ISA)

• Interface between programmer and CPU

• Accessing Memory and Registers

• Arithmetic Instructions

• Control Flow

• 2. Functions & the stack
• Stack data structure, applied to memory

• Behavior of function calls

• Storage of function data, at assembly level



Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface



Hardware: Control, Storage, ALU circuitry 
Slide 12

Program Counter (PC): Address 0

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

• acts on instruction 
bits to execute 
individual instructions

• PC value used to 
determine next 
instruction to execute

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U



How a computer runs a program:

Program

Operating System

Computer Hardware

Interaction
Between
Programs
and HW



Instruction Set Architecture (ISA) Defines:

1. Set and Encoding of Instructions: defines a set of instructions and specifies their 
machine code format

2. Processor State: memory, registers, flags

– makes CPU resources (registers, flags) available to the programmer

– Allows instructions to access main memory (potentially with limitations)

3. State Machine: transitions from one processor state to another as a result of 
instruction execution

– E.g., executing:  ADD %r1 %r2   (ADD source destination)

state change:

•  %r2 -> %r2+%r1

•  ALU flags: Overflow Flag (signed overflow)?

   Carry Flag (unsigned overflow)?    Zero Flag? 

•  PC   address of next instruction



ISA and the Compiler

text

executable 
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step:  gcc p1.c

Compiler (gcc) Reality is more complex: 
there are intermediate steps!

x86_64 machine code instructions



ISA and the Compiler

text

text

executable 
binary

Compiler (gcc -S)

C program (p1.c)

Assembly program (p1.s)

Executable code (a.out)

You can see the results of 
intermediate compilation
steps using different gcc flags

ISA is Interface between CPU and Compiler: 
Compiler translates program source code to 
machine code of a target ISA
e.g., C program → gcc → ISA machine code 
(0’s and 1’s)

x86_64 machine code instructions



Assembly Code

Human-readable form of CPU instructions

– Almost a 1-to-1 mapping to hardware instructions (Machine Code)

– Hides some details:
• Registers have names rather than numbers

• Instructions have names rather than variable-size codes

We’re going to use x86_64 Assembly

– Can compile C to x86_64 Assembly on our system: 
 gcc -S code.c        # open code.s in an editor to view



C statement: A = A*B

Simple instructions:

LOAD A, R1

LOAD B, R2

PROD R1, R2

STORE R2, A

Powerful instructions:

MULT B, A

Translation:
Load the values ‘A’ and ‘B’ from memory into registers (R1 and R2) , 
compute the product, store the result in memory where ‘A’ was.



Instruction Set Architecture (ISA)

• Above ISA: High-level language (C, Python, …)

– Hides ISA from users

– Allows a program to run on any machine (after translation by human and/or compiler)

• ISA: Interface between CPU and high-level language/compiler

– Compiler translates program source code to 

machine code of a target ISA

e.g., C program → gcc → ISA machine code (0’s and 1’s)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)

– ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA



RISC versus CISC (Historically)

• Complex Instruction Set Computing (CISC)
– Large, rich instruction set

– More complicated instructions built into hardware

– Multiple clock cycles per instruction

– Easier for humans to reason about

• Reduced Instruction Set Computing (RISC)
– Small, highly optimized set of instructions

– Memory accesses are specific instructions

– One instruction per clock cycle

– Compiler: more work, more potential optimization



So . . . Which System “Won”?

• Most ISAs (after mid/late 1980’s) are RISC

• The ubiquitous Intel x86 is CISC; while ARM is RISC
– Tablets and smartphones (ARM) taking over

• x86 breaks down CISC assembly into multiple, RISC-like,
machine language instructions

• Distinction between RISC and CISC is less clear
– Some RISC instruction sets have more instructions than some CISC sets



Intel’s Woes with ARM Foe



Instruction Set Architecture (ISA) Defines:

1. Set and Encoding of Instructions: defines a set of instructions and specifies their 
machine code format

2. Processor State: memory, registers, flags

– makes CPU resources (registers, flags) available to the programmer

– Allows instructions to access main memory (potentially with limitations)

3. State Machine: transitions from one processor state to another as a result of 
instruction execution

– E.g., executing:  ADD %r1 %r2   (ADD source destination)

state change:

•  %r2 -> %r2+%r1

•  ALU flags: Overflow Flag (signed overflow)?

   Carry Flag (unsigned overflow)?    Zero Flag? 

•  PC   address of next instruction



Processor State in Registers

• Working memory for currently 
executing program
– 14 for temporary data

( %rax - %r15 )

– 2 for location of runtime stack
( %rbp, %rsp )

– 1 for address of next instruction 
to execute ( %rip )

– 1 for status of recent ALU tests
( CF, ZF, SF, OF )

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes 
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15



Assembly Programmer’s View of State

CPU
Memory

Addresses

Data

Instructions

Registers:  

      PC: Program counter (%rip)

Condition codes (%EFLAGS)

General Purpose (%rax - %r15)

Memory:

• Byte addressable array

• Program code and data

• Execution stack

name value

%rax

%rbx

%rcx

%rdx

…

%r15

%rsp

%rbp

%rip next instr

addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:

  data

  instrs

  stack

0xffffffff

Registers

BUS



Four Types of Assembly Instructions

1. Arithmetic: use ALU to compute a value
– a + b           a << 2 a | b …

2. Data Movement: load and store
– move data/instructions between registers and memory

– x = y + z

3. Control Flow: branch, jump, etc.
– Change PC based on ALU condition code state

4. Stack Instructions: push and pop stack frames



Arithmetic

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in register / memory.



Four Types of Assembly Instructions

1. Arithmetic: use ALU to compute a value

2. Data Movement: load and store
– move data/instructions between registers and memory

– x = y + z

– Examples:  mov, movl, movq

– Load: move data from memory to register

– Store: move data from register to memory

The suffix letters specify 
how many bytes to move 

(not always necessary, 
depending on context).

l -> 32 bits
q -> 64 bits



Data Movement

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.



Data Movement: Four Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:
1. A register

2. A literal/immediate value

3. A location in memory

4. An offset from a location
in memory

• In x86_64, an instruction can access at most one memory location (e.g., 
one memory location and register OR two registers)

CPU
name value

%rax 10

%rbx 0x1234

%rdx

%rbx

. . .

address value

0x00000000

0x00000001

…

0x1234 10

0xffffffff

Registers Memory



Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:

– A register

– A location in memory

• In x86_64, an instruction can access at most one memory location



Four Addressing Modes: Register

• Instructions can refer to the name of a register

• Examples:

– mov %rax, %rbx 

– # Copy the contents of %rax into %rbx —  overwrites 
%rbx, no change to %rax

– add %r9, %rdx 

– # Add the contents of %r9 and %rdx, store the result 
in %rdx, no change to %r9

MOV S,D  # D  S



Four Addressing Modes: Immediate

• Refers to a constant or “literal” value, starts with $

• Allows programmer to hard-code a number

• Can be either decimal (no prefix) or hexadecimal (0x prefix)

mov $10, %rax  # Put the constant value 10 in register rax.

add $0xF, %rdx # Add 15 (0xF) to %rdx and store result in %rdx



Four Addressing Modes: Memory

• Accessing memory requires you to specify which address you want.

– Put the address in a register.

– Access the register with () around the register’s name.

mov (%rcx), %rax 
# Treat the value %rcx as an index into main memory, retrieve the value , 
and store the value in register %rax



Addressing Mode: Memory

movq (%rcx), %rax

– Use the address in register %rcx to access memory,

– then, store result at that memory address in register %rax

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the 
address in rcx.



0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Addressing Mode: Memory

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the 
address in rcx.

2. Copy value at that 
address to rax.

movq (%rcx), %rax

– Use the address in register %rcx to access memory,

– then, store result at that memory address in register %rax



Addressing Mode: Register

• Instructions can refer to the name of a register

• Examples:
– movq %rax, %r15

(Copy the contents of %rax into %r15 -- overwrites %r15, no change to %rax)

– addq %r9, %rdx
(Add the contents of %r9 and %rdx, store the result in %rdx, no change to %r9)



Addressing Mode: Immediate

• Refers to a constant or “literal” value, starts with $

• Allows programmer to hard-code a number

• Can be either decimal (no prefix) or hexadecimal (0x prefix)

movq $10, %rax
– Put the constant value 10 in register rax.

addq $0xF, %rdx
– Add 15 (0xF) to %rdx and store the result in %rdx.



Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.

– Put the address in a register.

– Access the register with () around the register’s name.

movq (%rcx), %rax

– Use the address in register %rcx to access memory, store result in 
register %rax



Addressing Mode: Displacement

• Like memory mode, but with a constant offset

– Offset is often negative, relative to %rbp

movq -16(%rbp), %rax

– Take the address in %rbp, subtract 16 from it, index into memory and store 
the result in %rax.



Addressing Mode: Displacement

movl -16(%rbp), %rax

– Take the address in %rbp, subtract 16 from it, index into memory and store 
the result in %rax.

(Memory)

name value

%rax 0

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF
:



What will the state of registers and memory look like after 

executing these instructions?

sub  $16, %rsp

movq $3, -8(%rbp)

mov  $10, %rax

sal  $1, %rax

add  -8(%rbp), %rax

movq %rax, -16(%rbp)

add  $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

…



What will the state of registers and memory look like after 

executing these instructions?

Registers

Name Value

%rax 2

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 3

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 10

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 23

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

A.

B.

C.

subq  $16, %rsp

movq  $3, -8(%rbp)

movq  $10, %rax

sal   $1, %rax

addq -8(%rbp), %rax

movq  %rax, -16(%rbp)

addq  $16, %rsp

x is stored at rbp-8

y is stored at rbp-16



Solution

Registers

Name Value

%rax 0

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

subq  $16, %rsp

movq  $3, -8(%rbp)

movq  $10, %rax

sal   $1, %rax

addq -8(%rbp), %rax

movq  %rax, -16(%rbp)

addq  $16, %rsp

x is stored at rbp-8

y is stored at rbp-16



Assembly Visualization Tool

• The authors of Dive into Systems, 
including Swarthmore faculty with 
help from Swarthmore students, 
have developed a tool to help 
visualize assembly code execution:

• https://asm.diveintosystems.org

• For this example, use the
arithmetic mode.

subq  $16, %rsp

movq  $3, -8(%rbp)

movq  $10, %rax

sal   $1, %rax

addq -8(%rbp), %rax

movq  %rax, -16(%rbp)

addq  $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

https://asm.diveintosystems.org/


Solution

sub   $16, %rsp      Subtract constant 16 from %rsp

movq  $3, -8(%rbp)     Move constant 3 to address %rbp-8

mov   $10, %rax      Move constant 10 to register %rax

sal   $1, %rax      Shift the value in %rax left by 1 bit

add   -8(%rbp), %rax   Add the value at address %rbp-8 to %rax

movq  %rax, -16(%rbp)  Store the value in %rax at address rbp-16

add   $16, %rsp      Add constant 16 to %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 23

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

C code equivalent:
x = 3;

y = x + (10 << 1);

subq  $16, %rsp

movq  $3, -8(%rbp)

movq  $10, %rax

sal   $1, %rax

addq  -8(%rbp), %rax

movq  %rax, -16(%rbp)

addq  $16, %rsp

x is stored at rbp-8

y is stored at rbp-16



What will the state of registers and memory look like after 

executing these instructions?

…

movq  %rbp, %rcx

subq  $8, %rcx

movq (%rcx), %rax

or   %rax, -16(%rbp)

neg  %rax

Registers

Name Value

%rax 0

%rcx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 8

0x1FFF000AD8 5

0x1FFF000AE0 0x1FFF000AF0

…



How might you implement the following C code in assembly?

z = x ^ y

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor  %rax, %rdx
movq %rax, -24(%rbp)

A:
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor  %rax, %rdx
movq %rax, -8(%rbp)

C:

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor  %rdx, %rax
movq %rax, -24(%rbp)

B:
movq -24(%rbp), %rax
movq -16(%rbp), %rdx
xor  %rdx, %rax
movq %rax, -8(%rbp)

D:



How might you implement the following C code in assembly?

x = y >> 3 | x * 8

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…



Solutions  (other instruction sequences can work too!)

• z = x ^ y

movq -8(%rbp), %rax

movq -16(%rbp), %rdx

xor  %rdx, %rax

movq %rax, -24(%rbp)

• x = y >> 3 | x * 8

mov  -8(%rbp), %rax

imul $8, %rax

movq -16(%rbp), %rdx

sar  $3, %rdx

or   %rax, %rdx

movq %rdx, -8(%rbp)



Control Flow

• Previous examples focused on:

– data movement (mov, movq)

– arithmetic (add, sub, or, neg, sal, etc.)

• Up next: Jumping!

(Changing which
instruction we
execute next.)



Relevant XKCD

xkcd #292

https://xkcd.com/292/


3. Control

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.



Unconditional Jumping / Goto

A label is a place you might jump to.

Labels ignored except for goto/jumps.

(Skipped over if encountered)

   int x = 20;
L1:

  int y = x + 30;
L2:

  printf(“%d, %d\n”, x, y);

int main(void) {

  long a = 10;

  long b = 20;

  goto label1;

  a = a + b;

label1:

  return;



Unconditional Jumping / Goto

pushq %rbp

  mov  %rsp, %rbp

  sub  $16, %rsp

  movq $10, -16(%ebp)

  movq $20, -8(%ebp)

  jmp  label1

  movq -8(%rbp), $rax

  add  $rax, -16(%rbp)

  movq -16(%rbp), %rax

label1:

  leave

int main(void) {

  long a = 10;

  long b = 20;

  goto label1;

  a = a + b;

label1:

  return;



Unconditional Jumping / Goto
Use of unconditional jumping besides 
goto?

– infinite loop

– break;

– continue;

– functions (handled differently)

• Often, we only want to jump when 
something is true / false

• Need some way to compare 
values, jump based on comparison 
results

pushq %rbp

  mov  %rsp, %rbp

  sub  $16, %rsp

  movq $10, -16(%ebp)

  movq $20, -8(%ebp)

  jmp  label1

  movq -8(%rbp), $rax

  add  $rax, -16(%rbp)

  movq -16(%rbp), %rax

label1:

  leave



Condition Codes (or Flags)

• Set in two ways:

1. As “side effects” produced by ALU

2. In response to explicit comparison instructions (e.g., cmp, test)

• x86_64 condition codes tell you:

– ZF — zero flag — if the result is zero

– SF — sign flag — if the result’s first bit is set (negative if signed)

– CF — carry flag — if the result overflowed (assuming unsigned) [“carried”]

– OF — overflow flag —if the result overflowed (assuming signed)



Processor State in Registers

• Working memory for currently 
executing program
– Temporary data

( %rax - %r15 )

– Location of runtime stack
(%rbp, %rsp )

– Address of next instruction to 
execute ( %rip )

– Status of recent ALU tests
( CF, ZF, SF, OF )

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes 
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15



Control Instructions

Change control flow (next instr is not sequential)

– Sometimes conditional:  if(cond)-else, for(cond)

– Sometimes not:  foo(),  return

Use Condition Codes:  %EFLAGS bit vector

Describe attributes of most recent arithmetic/logic op

• CF Carry Flag (did op result in unsigned overlow?)  

(a carry-out bit for ADD and no-carryout bit for SUB) 

• SF  Sign Flag (is the result negative?  (is high-order bit 1?))

• ZF  Zero Flag (is the result zero?) 

• OF  Overflow Flag (did op result in signed overflow? )

Implicitly set as the result of some (not all) ops:

addq %eax, %ecx  #adds and sets %EFLAGS bits



Instructions that set condition codes

1. Arithmetic/logic side effects (add, sub, or, etc.)

2. CMP and TEST: Does not change state of registers, only condition codes

cmp b, a  like computing a-b without storing result

• Sets OF if overflow, Sets CF if carry-out, 
Sets ZF if result zero, Sets SF if results is negative

test b, a  like computing a&b without storing result  

• Sets ZF if result zero, sets SF if a&b < 0
OF and CF flags are zero (there is no overflow with &)



Which flags would this sub set?

Suppose %rax holds 5, %rcx holds 7

sub $5, %rax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E.  CF, SF, and OF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)



Which flags would this sub set?

Suppose %rax holds 5, %rcx holds 7

sub $5, %rax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E.  CF, SF, and OF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)



Which flags would this sub set?

Suppose %rax holds 5, %rcx holds 7

cmp $5, %rax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E.  CF, SF, and OF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)



Which flags would this sub set?

Suppose %rax holds 5, %rcx holds 7

cmp $5, %rax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E.  CF, SF, and OF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)



How could we use jumps/CCs to implement this C code?

cmp $42, %rax
  jne L2
L1:
  sub $10, %rax
  jmp DONE
L2:
  add $5, %rax
DONE:

(B)cmp $42, %rax
  je L2
L1:
  sub $10, %rax
  jmp DONE
L2:
  add $5, %rax
DONE:

(A) cmp $42, %rax
  jne L2
L1:
  add $5, %rax
  jmp DONE
L2:
  sub $10, %rax
DONE:

(C)

long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

  userval = userval + 5;

} else {

  userval = userval - 10;

}

Assume userval is stored in 
%rax at this point.



How could we use jumps/CCs to implement this C code?

cmp $42, %rax
  jne L2
L1:
  sub $10, %rax
  jmp DONE
L2:
  add $5, %rax
DONE:

(B)cmp $42, %rax
  je L2
L1:
  sub $10, %rax
  jmp DONE
L2:
  add $5, %rax
DONE:

(A) cmp $42, %rax
  jne L2
L1:
  add $5, %rax
  jmp DONE
L2:
  sub $10, %rax
DONE:

(C)

long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

  userval = userval + 5;

} else {

  userval = userval - 10;

}

Assume userval is stored in 
%rax at this point.



C Loops to x86_64

do-while:
do {
  loop body
} while (cond);

C goto translations:
loop:
  loop body
  if(cond) goto loop             

while:

while(cond) {
  loop body
}

if(!cond) goto done
loop: 
  loop body      
  if(cond) goto loop           
done:

for:

for(init; cond; step){
  loop body
}

init code
  if(!cond) goto done
loop:                             
  loop body                             
  step                        
  if(cond) goto loop              
done:



Convert to C goto:

x = 0; 

for(i=0; i < 10; i++) {

 x = x + 1;

}

z = x * 3;

for:

for(init; cond; step){
  loop body
}

init code
<fill in your answer here>

int main(void) {

  long a = 10;

  long b = 20;

  goto label1;

  a = a + b;

label1:

  return;

Example goto code



Convert to C goto:

for:

for(init; cond; step){
  loop body
}

init code
 if(!cond) goto done
loop:                             
  loop body                             
  step                        
  if(cond) goto loop              
done:

x = 0; 

for(i=0; i < 10; i++) {

 x = x + 1;

}

z = x * 3;

int main(void) {

  long a = 10;

  long b = 20;

  goto label1;

  a = a + b;

label1:

  return;

Example goto code



CPU Registers

Using Jump Instructions

• jmp label # unconditional jump   (ex.  jmp .L2 )

• jge label # conditional jump (ex. if >=)  (je, jne, js, jg, …) 

movq $0, %rax

movq $4, %rbx

movq $0, %rdx

jmp .L2

.L1:

addq $1, %rax

.L2:

addq %rax, %rdx

cmp %rax, %rbx # R[%rbx] – R[%rax]

jge .L1

%rax

%rdx

%rbx

Try out this code: what does it do?

(A label is a place you might jump to.     Labels ignored except for goto/jumps)



Summary
• ISA defines what programmer can do on hardware

– Which instructions are available

– How to access state (registers, memory, etc.)

– This is the architecture’s assembly language

• In this course, we’ll be using x86_64

– Instructions for:

• moving data (mov, movl, movq)

• arithmetic (add, sub, imul, or, sal, etc.)

• control (jmp, je, jne, etc.)

– Condition codes for making control decisions

• If the result is zero (ZF)

• If the result’s first bit is set (negative if signed) (SF)

• If the result overflowed (assuming unsigned) (CF)

• If the result overflowed (assuming signed) (OF)



Four Types of Assembly Instructions

1. Arithmetic: use ALU to compute a value

2. Data movement: load and store

3. Control Flow: branch, jump, etc.

4. Stack Instructions: push and pop stack frames

– Shortcut instructions for common operations (we’ll cover these in detail 
later)



Overview

• Stack data structure, applied to memory

• Behavior of function calls

• Storage of function data, at assembly level



“A” Stack

• A stack is a basic data structure

– Last in, first out behavior (LIFO)

– Two operations
• Push (add item to top of stack)

• Pop (remove item from top of stack)

Oldest data

Newest data

Push (add data item)

Pop (remove and return item)



“The” Stack

• Apply stack data structure to memory

– Store local (automatic) variables

– Maintain state for functions (e.g., where to return)

• Organized into units called frames

– One frame represents all of the information for one function.

– Sometimes called activation records



Memory Model

• Starts at the highest memory
addresses, grows into lower
addresses.

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap



Stack Frames

• As functions get called,
new frames added to stack.

• Example: Lab 4

– main calls get_values()

– get_values calls double_capacity()

– double_capacity calls I/O library

main

0xFFFFFFFF

get_values

double_capacity

(I/O library)



Stack Frames

• As functions get called,
new frames added to stack.

• Example: Lab 4

– main calls get_values()

– get_values calls double_capacity()

– double_capacity calls I/O library

main

0xFFFFFFFF

get_values

read_float

(I/O library)

All of this stack growing/shrinking happens automatically 
(from the programmer’s perspective).



What is responsible for creating and removing stack frames?

A. The user

B. The compiler

C. C library code

D. The operating system

E. Something / someone else

Insight: EVERY function needs a stack frame.  
Creating / destroying a stack frame is a 
(mostly) generic procedure.



What is responsible for creating and removing stack frames?

A. The user

B. The compiler

C. C library code

D. The operating system

E. Something / someone else

Insight: EVERY function needs a stack frame.  
Creating / destroying a stack frame is a 
(mostly) generic procedure.



Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know / access?

• Local variables
• Current / previous stack frame location
• Function arguments
• Return address
• Return value

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

get_values

double_capacity



Local Variables

If the programmer says:

int x = 0;

Where should x be stored?
 (Recall basic stack data structure)

Which memory address is that?

main

0xFFFFFFFF

function 1

function 2

X goes here

0x????????



How should we determine the address to use for storing a new local 

variable?

A. The programmer specifies the variable location.

B. The CPU stores the location of the current stack frame.

C. The operating system keeps track of the top of the stack.

D. The compiler knows / determines where the local data for 
each function will be as it generates code.

E. The address is determined some other way.



How should we determine the address to use for storing a new local 

variable?

A. The programmer specifies the variable location.

B. The CPU stores the location of the current stack frame.

C. The operating system keeps track of the top of the stack.

D. The compiler knows / determines where the local data for 
each function will be as it generates code.

E. The address is determined some other way.



Program Characteristics

• Compile time (static)

– Information that is known by analyzing your program

– Independent of the machine and inputs

• Run time (dynamic)

– Information that isn’t known until program is running

– Depends on machine characteristics and user input



The Compiler Can…

• Perform type checking.

• Determine how much space you need on the stack to store local 
variables.

• Insert assembly instructions for you to set up the stack for function 
calls.

– Create stack frames on function call

– Restore stack to previous state on function return



Local Variables

Compiler can allocate N bytes on the stack by subtracting N from the stack 
pointer: (rsp)

Current Stack 
Frame

Current Stack 
Frame

N bytes

New variable 

rsp

rsp-N



The Compiler Can’t…Predict User Input

main

0xFFFFFFFF

can the compiler predict 
which func goes here 

apriori?

int main(void) {

  int decision = [read user input];

 if(decision > 5){

      funcA();

  }

 else{

      funcB();

  }

}



The Compiler Can’t…Predict User Input

int main(void) {

  int decision = [read user input];

 if(decision > 5){

      funcA();

  }

 else{

      funcB();

  }

}

main

0xFFFFFFFF

funcB

main

0xFFFFFFFF

funcA OR



The Compiler Can’t…

Predict user input.

Can’t assume a function will always be at a certain address on the stack.

Alternative: create stack frames relative to the current (dynamic) state of the stack.



Stack Frame Location

Where in memory is the current stack frame?

main

0xFFFFFFFF

function 1

function 2

current top of the 
stack

current bottom 
of the stack



Recall: x86_64 Register Conventions

• Working memory for currently 
executing program
– Address of next instruction to 

execute ( %rip )

– Location of runtime stack
(%rbp, %rsp )

– Temporary data
( %rax - %r15 )

– Status of recent ALU tests
( CF, ZF, SF, OF )

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes 
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15



Stack Frame Location

Where in memory is the current stack frame?

• rsp: stack pointer

• rbp: frame pointer (base pointer)

main

0xFFFFFFFF

function 1

function 2

rsp

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

rbp



Stack Frame Location

• Compiler ensures that this invariant 
holds.

• This is why all local variables we’ve seen
in assembly are relative
to rbp or rsp!

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

main

0xFFFFFFFF

function 1

function 2

rsp

rbp



How would we implement pushing x to the top of the stack in 

x86_64?

A. Increment rsp
Store x at (rsp)

B. Store x at (rsp)
Increment rsp

C. Decrement rsp
Store x at (rsp)

D. Store x at (rsp)
Decrement rsp

E. Copy rsp to rbp
Store x at rbp

X goes here

main

0xFFFFFFFF

function 1

function 2

rsp
(top of the stack)

rbp
(bottom of stack 

frame)

Lo
w

er
 M

em
. A

dd
re

ss
es



How would we implement pushing x to the top of the stack in 

x86_64?

A. Increment rsp
Store x at (rsp)

B. Store x at (rsp)
Increment rsp

C. Decrement rsp
Store x at (rsp)

D. Store x at (rsp)
Decrement rsp

E. Copy rsp to rbp
Store x at rbp

X goes here

main

0xFFFFFFFF

function 1

function 2

rsp
(top of the stack)

rbp
(bottom of stack 

frame)

Lo
w

er
 M

em
. A

dd
re

ss
es



Local Variables

• Generally, we can make space on the stack for N bytes by:

– subtracting N from rsp

New variable of 
N bytes

Current Stack Frame

rsp

rbp

Current Stack Frame

rsp

rbp

N bytes



Local Variables

• When we’re done, free the space by adding N back to rsp

– rsp + N

New variable of 
N bytes

Current Stack Frame

rsp

rbp

Current Stack Frame

rsp

rbp

N bytes



Stack Frame Contents

What needs to be stored in a stack frame? What must a function know?

• Local variables

• Previous stack frame base address

• Function arguments

• Return value

• Return address

• Saved registers

• Spilled temporaries main

0xFFFFFFFF

function 1

function 2

rsp

rbp

Lo
w

er
 M

em
. A

d
d

re
ss

es



Stack Frame Contents

What needs to be stored in a stack frame?
– Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2

rsp

rbp

Lo
w

er
 M

em
. A

d
d

re
ss

es



Stack Frame Relationships

• If function 1 calls function 2:

– function 1 is the caller

– function 2 is the callee

• With respect to main:

– main is the caller

– function 1 is the callee

main

0xFFFFFFFF

function 1

function 2

rsp

rbp

Lo
w

er
 M

em
. A

d
d

re
ss

es

caller: when f1 calls f2 

callee: when f1 calls f2

caller: when main calls f1

callee: when main calls f1



Where should we store the following stuff?

A. In registers

B. On the heap

C. In the caller’s stack frame

D. In the callee’s stack frame

E. Somewhere else

Previous stack frame base address
Function arguments
Return value
Return address



Calling Convention

• You could store this stuff wherever you want!

– The hardware does NOT care.

– What matters: everyone agrees on where to find the necessary data.

• Calling convention: agreed upon system for exchanging data between 
caller and callee

• When possible, keep values in registers (why?)

– Accessing registers is faster than memory (stack)



x86_64 Calling Convention

• The function’s return value: In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)





x86_64 Calling Convention

• The function’s return value: In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)



Return Value

• If the callee function produces a result, the caller can find it in %rax

• We saw this when we wrote our function in the weekly lab last friday

– Copy the result to %rax before we finishing up



Dynamic Stack Accounting

• Dedicate CPU registers for stack bookkeeping

– %rsp (stack pointer): Top of current stack frame

– %rbp (frame pointer): Base of current stack 

frame

• Compiler maintains these pointers

– Does the compiler know the exact address they 

point to? 

– Compiler doesn’t know or care! (job of the OS to 

figure that out)

• To the compiler: every variable access is relative 

to %rsp and %rbp!

current stack 
frame

…

rsp

rbp



Compiler: updates to rsp/rbp on function call/return

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

current stack 
frame

…

rsp

rbp



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp
caller’s %rbp value

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

rsp

rbp

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp

3. Subtract N from %rsp

caller’s %rbp value



Compiler: Upon a new Function Call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Immediately upon calling a new function:

1. push current %rbp

2. Set %rbp = %rsp

3. Subtract N from %rsp

caller’s %rbp value

callee stack frame 

rsp

rbp

Callee can 
now execute.



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp

caller’s %rbp value

callee stack frame 

rsp

rbp



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp (callee stack frame no longer exists)

caller’s %rbp value

callee stack frame 

rsp

rbp



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp (callee stack frame no longer exists)

2. pop %rbp

caller’s %rbp value

callee stack frame 

rsp

rbp



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp 

2. pop %rbp 
-  pop caller’s rbp off the stack and set it to the value of rbp

- decrement rsp

caller’s %rbp value

callee stack frame 

rsp

rbp

X86_64 has another convenience 
instruction for this: leaveq



Compiler: Returning from a function call..

invariant:
The current function’s stack 
frame is always between the 

addresses
stored in rsp and rbp

caller stack frame 

…

Returning from a function:

1. Set %rsp = %rbp 

2. pop %rbp 
-  pop caller’s rbp off the stack and set it to the value of rbp

- decrement rsp

rsp

rbp

Back to where 
we started



x86 Calling Conventions: Function Call

Initial state

caller stack frame

…

rsp

rbp

caller stack frame 

…

caller’s %rbp value

push %rbp (store caller’s base pointer)

caller stack frame 

…

caller’s %rbp value

callee

callee

mov %rsp, %rbp
(establish callee’s frame pointer)

caller stack frame 

…

caller’s %rbp value

callee stack frame 

sub $SIZE, %rsp
(allocate space for callee’s locals)

rsp

rbp

rsp

rbp

rsp

rbp



x86 Calling Conventions: Function Return

x86_64 provides a convenience 
instruction that does all of this:
leaveq

caller stack frame 

…

caller’s %rbp value

callee stack frame 

we want to restore the caller’s frame

rsp

rbp caller stack frame 

…

caller’s %rbp value

callee

mov %rbp, %rsp
(restore caller’s stack pointer)

rsp

rbp

caller stack frame

…

rsp

rbp

pop %rbp (restore caller’s frame pointer)



x86_64 Calling Convention

• The function’s return value:
– In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)



Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

callq funcB

… 

funcB:

push %rbp

mov %rsp, %rbp

…

Function A

Function B

…



Program Counter

Program 
Counter (PC)

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Text Memory Region
Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

add $5, %rcx



Program Counter

Program 
Counter (PC)

Text Memory Region
Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

add $5, %rcx

Update PC to next instruction.

Execute the addl.

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Program Counter

Program 
Counter (PC)

Text Memory Region
Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.) funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

What do we do now?

Follow PC, fetch instruction:

mov $rcx, -8(%rbp)



Program Counter

Program 
Counter (PC)

Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

mov $rcx, -8(%rbp)

Update PC to next instruction.

Execute the mov.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Program Counter

Program 
Counter (PC)

Recall:  PC stores the address of 
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Keep executing in a straight line 
downwards like this until:

We hit a jump instruction.
We call a function.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Jump

• On a (non-function call) jump:

– Check condition codes

– Set PC to execute elsewhere (usually not the next instruction)

• Do we ever need to go back to the instruction after the jump?

Maybe (and if so, we’d have a label to jump back to), but usually not.



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce 
result (stored in %rax).

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce 
result (stored in %rax).

Restore function A’s stack.

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Changing the PC: Functions

Program 
Counter (PC)

What we’d like this to do:

Return:
Go back to what we were doing 
before funcB started.

Unlike jumping, we intend to go back!

Text Memory Region

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Like push, pop, and leave, call and ret are 
convenience instructions. What should they do to support the 
PC-changing behavior we need?  (The PC is %rip.)

call

In words:

In instructions:

ret

In words:

In instructions:



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory RegionExecuting instruction:
callq funcB

PC points to next instruction

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

1. push %rip funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

1. push %rip
2. jump funcB
3. (execute funcB)

Function B

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop %rip

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

6. (resume funcA) funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq



Recap: PC upon a Function Call

Program 
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop %rip
6. (resume funcA)

funcA:

add $5, %rcx

mov %rcx, -8(%rbp)

…

callq funcB

add %rax, %rcx

…

funcB:

push %rbp

mov %rsp, %rbp

…

mov $10, %rax

leaveq

retq

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



Functions and the Stack

Program 
Counter (%rip)

Function A

…

Stack Memory Region

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop %rip
6. (resume funcA)

callq

leaveq

retq

Return address:

Address of the instruction we should 
jump back to when we finish (return 
from) the currently executing function.

Stored PC in funcA
(Address of instruction: add 

%rax, %rcx)



x86_64 Stack / Function Call Instructions

push
Create space on the stack and place 
the source there.

sub $8, %rsp

mov src, (%rsp)

pop
Remove the top item off the stack and 
store it at the destination.

mov (%rsp), dst

add $8, %rsp

callq
1. Push return address on stack 

 2. Jump to start of function

push %rip

jmp target

leaveq
Prepare the stack for return
(restoring caller’s stack frame)

mov %rbp, %rsp

pop %rbp

retq

Return to the caller, PC  saved PC
(pop return address off the stack into 
PC (rip))

pop %rip



x86_64 Calling Convention

• The function’s return value:
– In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
– Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
– Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
– First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
– Any additional arguments stored on the caller’s stack frame (shared with callee)



Function Arguments

• Most functions don’t receive more than 6 arguments, so x86_64 can 
simply use registers most of the time.

• If we do have more than 6 arguments though (e.g., perhaps a printf 
with lots of placeholders), we can’t fit them all in registers.

• In that case, we need to store the extra arguments on the stack.
By convention, they go in the caller’s stack frame.



If we need to place arguments in the caller’s stack frame, should they go 

above or below the return address?

A. Above

B. Below

C. It doesn’t matter

D. Somewhere else
Caller

…

Return Address

Callee

Above

Below



If we need to place arguments in the caller’s stack frame, should they go 

above or below the return address?

A. Above

B. Below

C. It doesn’t matter

D. Somewhere else
Caller

…

Return Address

Callee

Above

Below



x86_64 Stack / Function Call Instructions

push
Create space on the stack and place 
the source there.

sub $8, %rsp

mov src, (%rsp)

pop
Remove the top item off the stack and 
store it at the destination.

mov (%rsp), dst

add $8, %rsp

callq
1. Push return address on stack 

 2. Jump to start of function

push %rip

jmp target

leaveq
Prepare the stack for return
(restoring caller’s stack frame)

mov %rbp, %rsp

pop %rbp

retq

Return to the caller, PC  saved PC
(pop return address off the stack into 
PC (rip))

pop %rip



Arguments

• Extra arguments to the callee are stored just underneath the return 
address.

• Does it matter what order
we store the arguments in?

• Not really, as long as
we’re consistent
(follow conventions).

Caller

…

Return Address

Callee

Callee Arguments

This is why arguments can be 
found at positive offsets relative 
to %rbp.

rsp

rbp





Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2



Saving Registers

• Registers are a relatively scarce resource, but they’re fast to access. Memory 
is plentiful, but slower to access.

• Should the caller save its registers to free them up for the callee to use?

• Should the callee save the registers in case the caller was using them?

• Who needs more registers for temporary calculations, the caller or callee?

• Clearly the answers depend on what the functions do…



Splitting the difference…

• We can’t know the answers to those questions in advance…

• Divide registers into two groups:

Caller-saved: %rax, %rdi, %rsi, %rdx, %rcx, %r8, %r9, 
%r10, %r11

Caller must save them prior to calling callee
callee free to trash these, 
Caller will restore if needed

Callee-saved: %rbx, %r12, %r13, %r14, %r15
Callee must save them first, and restore 
them before returning
Caller can assume these will be preserved



Running Out of Registers

• Some computations require more than 16 general-purpose registers to 
store temporary values.

• Register spilling: The compiler will move some temporary values to 
memory, if necessary.

– Values pushed onto stack, popped off later

– No explicit variable declared by user

– This is getting to the limits of CS 31!
• – take CS 75 (compilers) for more details.



Up next…

• Connecting Arrays, Structs, and Pointers with assembly
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