
CS 31: Introduction to Computer Systems

11: Assembly Arithmetic and Control
02-27-2025

Announcements

• Lab 4 Due Today. Please submit your lab questionnaire

• HW Groups will rotate this week – Let me know your preferences!

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

What we will learn this week

1. Instruction set architecture (ISA)

• Interface between programmer and CPU

• Accessing Memory and Registers

• Arithmetic Instructions

• Control Flow

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface

Hardware: Control, Storage, ALU circuitry
Slide 11

Program Counter (PC): Address 0

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

• acts on instruction
bits to execute
individual instructions

• PC value used to
determine next
instruction to execute

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

How a computer runs a program:

• We know: How HW Executes Instructions:

• This Week: Instructions and ISA

– Program Encoding: C code to assembly code

– Learn IA32 Assembly programming

Program

Operating System

Computer Hardware

Interaction
Between
Programs
and HW

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

machine code instructions

Assembly Code

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Human Readable Form
of Machine Code

machine code instructions

Machine Code

Binary (0’s and 1’s) Encoding of ISA Instructions

– some bits: encode the instruction (opcode bits)

– others encode operand(s)
 (eg) 01001010 opcode operands

 01 001 010
 ADD %r1 %r2

– different bits fed
through different
CPU circuitry:

MUX
Register #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

0:

1:

2:

3:

4:

…

N-1:

(Memory)

What is “assembly”?

Assembly is the
“human readable”
form of the
instructions a
machine can
understand.

objdump –d a.out

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $10, -16(%rbp)

movq $20, -8(%rbp)

movq -8(%rbp), $rax

addq $rax, -8(%rbp)

movq -8(%rbp), %rax

leaveq

Object / Executable / Machine Code

Assembly Machine Code (Hexadecimal)

55

89 E5

83 EC 10

C7 45 F8 0A 00 00 00

C7 45 FC 14 00 00 00

8B 45 FC

01 45 F8

B8 45 F8

C9

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $10, -16(%rbp)

movq $20, -8(%rbp)

movq -8(%rbp), $rax

addq $rax, -8(%rbp)

movq -8(%rbp), %rax

leaveq

Object / Executable / Machine Code

Assembly

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $10, -16(%rbp)

movq $20, -8(%rbp)

movq -8(%rbp), $rax

addq $rax, -8(%rbp)

movq -8(%rbp), %rax

leaveq

Machine Code (Hexadecimal)

55

89 E5

83 EC 10

C7 45 F8 0A 00 00 00

C7 45 FC 14 00 00 00

8B 45 FC

01 45 F8

B8 45 F8

C9

int main() {
 int a = 10;
 int b = 20;

 a = a + b;

 return a;
}

Slide 18

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

High-level language

CPU-specific format
(011010…)

Interface for speaking
to CPU

Slide 19

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:

– Defines a set of instructions and specifies their machine code format

– Makes CPU resources (registers, flags) available to the programmer

– Allows instructions to access main memory (potentially with limitations)

– Provides control flow mechanisms (instructions to change what executes
next)

Intel x86 Family

Intel i386 (1985)

• 12 MHz - 40 MHz

• ~300,000 transistors

• Component size: 1.5 µm

Intel Core i9 9900k (2018)

• ~4,000 MHz

• ~7,000,000,000 transistors

• Component size: 14 nm

Everything in this family uses the same ISA (Same instructions)!

Processor State in Registers

Working memory for currently
executing program
– Temporary data: %rax - %r15

– Current stack frame

– %rbp: base pointer

– %rsp: stack pointer

– Address of next instruction to
execute: %rip

– Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Component Registers

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

• Registers starting with “r” are
64-bit registers
– %rax, %rbx, …, %rsi, %rdi

• Sometimes, you might only want to
store 32 bits (e.g., int variable)

– You can access the lower 32 bits of a
register with prefix e:

– %eax, %ebx, …, %esi, %edi

– with a suffix of d for registers %r8 to %r15

– %r8d, %r9d, …, %r15d

Assembly Programmer’s View of State

CPU
Memory

Addresses

Data

Instructions

Registers:

 PC: Program counter (%rip)

Condition codes (%EFLAGS)

General Purpose (%rax - %r15)

Memory:

• Byte addressable array

• Program code and data

• Execution stack

name value

%rax

%rbx

%rcx

%rdx

…

%r15

%rsp

%rbp

%rip next instr

addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:

 data

 instrs

 stack

0xffffffff

Registers

BUS

Types of assembly instructions

• Data movement

– Move values between registers and memory

– Examples: movq

• Load: move data from memory to register

• Store: move data from register to memory

The suffix letters specify
how many bytes to move

(not always necessary,
depending on context).

l -> 32 bits
q -> 64 bits

Data Movement

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.

Types of assembly instructions

• Data movement

– Move values between registers and memory

• Arithmetic

– Uses ALU to compute a value

– Examples: addq, subq

Arithmetic

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in register / memory.

Types of assembly instructions

• Data movement

– Move values between registers and memory

• Arithmetic

– Uses ALU to compute a value

• Control

– Change PC based on ALU condition code state

– Example: jmpq

Control

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.

Types of assembly instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value

• Control
– Change PC based on ALU condition code state

• Stack / Function call (We’ll cover these in detail later)
– Shortcut instructions for common operations

Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:

– A register

– A location in memory

• In x86_64, an instruction can access at most one memory location

Addressing Modes

• Instructions can refer to:

– the name of a register (%rax, %rbx, etc)

– to a constant or “literal” value, starts with $

– (%rax) : accessing memory
• treat the value in %rax as a memory address,

Addressing Mode: Memory

movq (%rcx), %rax

– Use the address in register %rcx to access memory,

– then, store result at that memory address in register %rax

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the
address in rcx.

0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Addressing Mode: Memory

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

movq (%rcx), %rax

– Use the address in register %rcx to access memory,

– then, store result at that memory address in register %rax

Addressing Mode: Register

• Instructions can refer to the name of a register

• Examples:
– movq %rax, %r15

(Copy the contents of %rax into %r15 -- overwrites %r15, no change to %rax)

– addq %r9, %rdx
(Add the contents of %r9 and %rdx, store the result in %rdx, no change to %r9)

Addressing Mode: Immediate

• Refers to a constant or “literal” value, starts with $

• Allows programmer to hard-code a number

• Can be either decimal (no prefix) or hexadecimal (0x prefix)

movq $10, %rax
– Put the constant value 10 in register rax.

addq $0xF, %rdx
– Add 15 (0xF) to %rdx and store the result in %rdx.

Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.

– Put the address in a register.

– Access the register with () around the register’s name.

movq (%rcx), %rax

– Use the address in register %rcx to access memory, store result in
register %rax

Addressing Mode: Displacement

• Like memory mode, but with a constant offset

– Offset is often negative, relative to %rbp

movq -16(%rbp), %rax

– Take the address in %rbp, subtract 16 from it, index into memory and store
the result in %rax.

Addressing Mode: Displacement

movl -16(%rbp), %rax

– Take the address in %rbp, subtract 16 from it, index into memory and store
the result in %rax.

(Memory)

name value

%rax 0

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF
:

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78 Not
this!

…

0xFFFFFFFF
:

Addressing Mode: Displacement

movl -16(%rbp), %rax

– Take the address in %rbp, subtract 16 from it, index into memory and store
the result in %rax.

(Memory)

name value

%rax 11

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

2. Copy value at that
address to rax.

Let’s try a few examples...

What will the state of registers and memory look like after

executing these instructions?

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

…

What will the state of registers and memory look like after

executing these instructions?

Registers

Name Value

%rax 2

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 3

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 10

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 23

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

A.

B.

C.

subq $16, %rsp

movq $3, -8(%rbp)

movq $10, %rax

sal $1, %rax

addq -8(%rbp), %rax

movq %rax, -16(%rbp)

addq $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Solution

Registers

Name Value

%rax 0

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

subq $16, %rsp

movq $3, -8(%rbp)

movq $10, %rax

sal $1, %rax

addq -8(%rbp), %rax

movq %rax, -16(%rbp)

addq $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Assembly Visualization Tool

• The authors of Dive into Systems,
including Swarthmore faculty with
help from Swarthmore students,
have developed a tool to help
visualize assembly code execution:

• https://asm.diveintosystems.org

• For this example, use the
arithmetic mode.

subq $16, %rsp

movq $3, -8(%rbp)

movq $10, %rax

sal $1, %rax

addq -8(%rbp), %rax

movq %rax, -16(%rbp)

addq $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

https://asm.diveintosystems.org/

Solution

sub $16, %rsp Subtract constant 16 from %rsp

movq $3, -8(%rbp) Move constant 3 to address %rbp-8

mov $10, %rax Move constant 10 to register %rax

sal $1, %rax Shift the value in %rax left by 1 bit

add -8(%rbp), %rax Add the value at address %rbp-8 to %rax

movq %rax, -16(%rbp) Store the value in %rax at address rbp-16

add $16, %rsp Add constant 16 to %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 23

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

C code equivalent:
x = 3;

y = x + (10 << 1);

subq $16, %rsp

movq $3, -8(%rbp)

movq $10, %rax

sal $1, %rax

addq -8(%rbp), %rax

movq %rax, -16(%rbp)

addq $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

What will the state of registers and memory look like after

executing these instructions?

…

movq %rbp, %rcx

subq $8, %rcx

movq (%rcx), %rax

or %rax, -16(%rbp)

neg %rax

Registers

Name Value

%rax 0

%rcx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 8

0x1FFF000AD8 5

0x1FFF000AE0 0x1FFF000AF0

…

How might you implement the following C code in assembly?

z = x ^ y

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -24(%rbp)

A:
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -8(%rbp)

C:

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -24(%rbp)

B:
movq -24(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -8(%rbp)

D:

How might you implement the following C code in assembly?

x = y >> 3 | x * 8

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…

Solutions (other instruction sequences can work too!)

• z = x ^ y

movq -8(%rbp), %rax

movq -16(%rbp), %rdx

xor %rdx, %rax

movq %rax, -24(%rbp)

• x = y >> 3 | x * 8

mov -8(%rbp), %rax

imul $8, %rax

movq -16(%rbp), %rdx

sar $3, %rdx

or %rax, %rdx

movq %rdx, -8(%rbp)

Control Flow

• Previous examples focused on:

– data movement (mov, movq)

– arithmetic (add, sub, or, neg, sal, etc.)

• Up next: Jumping!

(Changing which
instruction we
execute next.)

Relevant XKCD

xkcd #292

https://xkcd.com/292/

Unconditional Jumping / Goto

A label is a place you might jump to.

Labels ignored except for goto/jumps.

(Skipped over if encountered)

 int x = 20;
L1:

 int y = x + 30;
L2:

 printf(“%d, %d\n”, x, y);

int main(void) {

 long a = 10;

 long b = 20;

 goto label1;

 a = a + b;

label1:

 return;

How could we use jumps/CCs to implement this C code?

cmp $42, %rax
 jne L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(B)cmp $42, %rax
 je L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(A) cmp $42, %rax
 jne L2
L1:
 add $5, %rax
 jmp DONE
L2:
 sub $10, %rax
DONE:

(C)

long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

 userval = userval + 5;

} else {

 userval = userval - 10;

}

Assume userval is stored in
%rax at this point.

How could we use jumps/CCs to implement this C code?

cmp $42, %rax
 jne L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(B)cmp $42, %rax
 je L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(A) cmp $42, %rax
 jne L2
L1:
 add $5, %rax
 jmp DONE
L2:
 sub $10, %rax
DONE:

(C)

long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

 userval = userval + 5;

} else {

 userval = userval - 10;

}

Assume userval is stored in
%rax at this point.

C Loops to x86_64

do-while:
do {
 loop body
} while (cond);

C goto translations:
loop:
 loop body
 if(cond) goto loop

while:

while(cond) {
 loop body
}

if(!cond) goto done
loop:
 loop body
 if(cond) goto loop
done:

for:

for(init; cond; step){
 loop body
}

init code
 if(!cond) goto done
loop:
 loop body
 step
 if(cond) goto loop
done:

Convert to C goto:

x = 0;

for(i=0; i < 10; i++) {

 x = x + 1;

}

z = x * 3;

for:

for(init; cond; step){
 loop body
}

init code
<fill in your answer here>

int main(void) {

 long a = 10;

 long b = 20;

 goto label1;

 a = a + b;

label1:

 return;

Example goto code

Convert to C goto:

for:

for(init; cond; step){
 loop body
}

init code
 if(!cond) goto done
loop:
 loop body
 step
 if(cond) goto loop
done:

x = 0;

for(i=0; i < 10; i++) {

 x = x + 1;

}

z = x * 3;

int main(void) {

 long a = 10;

 long b = 20;

 goto label1;

 a = a + b;

label1:

 return;

Example goto code

CPU Registers

Using Jump Instructions

• jmp label # unconditional jump (ex. jmp .L2)

• jge label # conditional jump (ex. if >=) (je, jne, js, jg, …)

movq $0, %rax

movq $4, %rbx

movq $0, %rdx

jmp .L2

.L1:

addq $1, %rax

.L2:

addq %rax, %rdx

cmp %rax, %rbx # R[%rbx] – R[%rax]

jge .L1

%rax

%rdx

%rbx

Try out this code: what does it do?

(A label is a place you might jump to. Labels ignored except for goto/jumps)

Summary

• ISA defines what programmer can do on hardware
– Which instructions are available
– How to access state (registers, memory, etc.)
– This is the architecture’s assembly language

• In this course, we’ll be using x86_64
– Instructions for:

• moving data (mov, movl, movq)
• arithmetic (add, sub, imul, or, sal, etc.)
• control (jmp, je, jne, etc.)

– Condition codes for making control decisions
• If the result is zero (ZF)
• If the result’s first bit is set (negative if signed) (SF)
• If the result overflowed (assuming unsigned) (CF)
• If the result overflowed (assuming signed) (OF)

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Announcements

	Reading Quiz
	Slide 3: Reading Quiz
	Slide 8: What we will learn this week

	ISA
	Slide 9: Abstraction
	Slide 10: Abstraction
	Slide 11: Hardware: Control, Storage, ALU circuitry
	Slide 12: How a computer runs a program:
	Slide 13: Compilation Steps (.c to a.out)
	Slide 14: Assembly Code
	Slide 15: Machine Code
	Slide 16: What is “assembly”?
	Slide 17: Object / Executable / Machine Code
	Slide 18: Object / Executable / Machine Code
	Slide 19: Compilation Steps (.c to a.out)

	ISA Instructions
	Slide 20: Instruction Set Architecture (ISA)
	Slide 21: Intel x86 Family
	Slide 22: Processor State in Registers
	Slide 23: Component Registers
	Slide 24: Assembly Programmer’s View of State
	Slide 25: Types of assembly instructions
	Slide 26: Data Movement
	Slide 27: Types of assembly instructions
	Slide 28: Arithmetic
	Slide 29: Types of assembly instructions
	Slide 30: Control
	Slide 31: Types of assembly instructions

	Addressing Modes
	Slide 32: Addressing Modes
	Slide 33: Addressing Modes
	Slide 34: Addressing Mode: Memory
	Slide 35: Addressing Mode: Memory
	Slide 36: Addressing Mode: Register
	Slide 37: Addressing Mode: Immediate
	Slide 38: Addressing Mode: Memory
	Slide 39: Addressing Mode: Displacement
	Slide 40: Addressing Mode: Displacement
	Slide 41: Addressing Mode: Displacement
	Slide 42: Let’s try a few examples...
	Slide 43: What will the state of registers and memory look like after executing these instructions?
	Slide 44: What will the state of registers and memory look like after executing these instructions?
	Slide 45: Solution
	Slide 46: Assembly Visualization Tool
	Slide 47: Solution
	Slide 48: What will the state of registers and memory look like after executing these instructions?
	Slide 49: How might you implement the following C code in assembly? z = x ^ y
	Slide 50: How might you implement the following C code in assembly? x = y >> 3 | x * 8
	Slide 51: Solutions (other instruction sequences can work too!)

	Control Flow
	Slide 52: Control Flow
	Slide 53: Relevant XKCD
	Slide 54: Unconditional Jumping / Goto
	Slide 55: How could we use jumps/CCs to implement this C code?
	Slide 56: How could we use jumps/CCs to implement this C code?
	Slide 57: C Loops to x86_64
	Slide 58: Convert to C goto:
	Slide 59: Convert to C goto:
	Slide 60: Using Jump Instructions
	Slide 61: Summary

