CS 31: Introduction to Computer Systems

11: Assembly Arithmetic and Control
02-27-2025

Announcements

* Lab 4 Due Today. Please submit your lab questionnaire

* HW Groups will rotate this week — Let me know your preferences!

Check your frequency:

* Iclicker2: frequency AA

Re a d | n g Qu | Z * Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency
* Note the red border!
Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

* 1 minute per question

* No talking, no laptops, phones during the quiz

What we will learn this week

1. Instruction set architecture (ISA)
* Interface between programmer and CPU
* Accessing Memory and Registers
* Arithmetic Instructions
e Control Flow

Abstraction

-
User / Programmer

Wants low complexity

(¥
p

Applications
Specific functionality

(¥

p
Software library
Reusable functionality
-

P
Operating system
Manage resources

(¥

Complex devices
Compute & I/O

Abstraction

Applications
Specific functionality
This week: Machine Interface

Operating system
Manage resources

.
L Complex d Last week: Circuits, Hardware Implementatlon
Compute) e s B

Slide 11

Hardware: Control, Storage, ALU circuitry

Program Counter (PC): Address 0

Instruction Register (IR): | OP Code | Reg A | Reg B | Result

acts on instruction
bits to execute
individual instructions
PC value used to
determine next
instruction to execute

Data in wew ()
ata n 64-bit Register #0
Dat;NirE1 MUX [(Memory)
WE 64-bit Register #1 A o:
Data in M L 1:
! 64-bit Register #2 5.
WE MUX U '
Data in mewees 64-bit Regi e 3
WE -bit Register A
eee Let the ALUdo n-u:
its thing.
Register File (e.g., Add)

How a computer runs a program:

Program

Operating System

Computer Hardware

e We know: How HW Executes Instructions:
e This Week: Instructions and ISA

S

_

Interaction
Between
Programs
and HW

— Program Encoding: C code to assembly code

— Learn I1A32 Assembly programming

Compilation Steps (.c to a.out)

text C program (pl.c) You can see the results of
‘1’ intermediate compilation
steps using different gcc flags

Compiler (gcc -95)

text Assembly program (p1l. s)

Assembler (gcc -c (oras = gcc’s assembler))

|

: Other object files
binary Object code (pl. o) (2.0, P3.0)
Linker (gcc (or 1d)) _ Library obj. code
l (1ibc.a)
executable

Executable code (a . out)

binary machine code instructions

Assembly Code

text C program (p1l.c)

!

Compiler (gcc -95)

text Assembly program (p1l. s)

Human Readable Form
of Machine Code

Assembler (gcc -c (oras =

|

binary Object code (p1l. o)

|

Linker (gcc (or 1d))

|

executable

. Executable code (a . out)
binary

gcc’s assembler))

machine code instructions

Machine Code

Binary (0O’s and 1’s) Encoding of ISA Instructions
— some bits: encode the instruction (opcode bits)

— others encode operand(s)

(eg) 01001010

opcode operands

01 001 010
ADD %Srl %r2

— different bits fed
through different
CPU circuitry:

01

001 | O10

Register #0

Register #1

Register #2

(Memory)

A 4

—

MUX

MUX

cCr r /je——
w N 2o

N-1:

What is “assembly’?

pushg Srbp

movqg Srsp, Srbp
subg $16, $rsp
movg $10, -16(%rbp)
movqg $20, -8 (% rbp)
movg -8 (%rbp), S$Srax
addg Srax, -8 (%rbp)
movqg -8 (%rbp), %rax
leaveq

Assembly is the
“human readable
form of the
Instructions a
machine can
understand.

objdump -d a.out

Object / Executable / Machine Code

Assembly Machine Code (Hexadecimal)
pushqg srbp 55

movqg Srsp, Srbp 89 ED

subg $16, Srsp 83 EC 10

movg $10, -16(%rbp) C7 45 F8 0OA 00 00 0O
movqg $20, -8 (%rbp) C7 45 FC 14 00 00 0O
movqg -8 (%rbp), S$rax 8B 45 FC

addg Srax, -8 (%rbp) 01 45 F8

movqg -8 (%rbp), Srax B8 45 F8

leaveq C9

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions

Object / Executable / Machine Code

Assembly

pushg Srbp

movqg 3srsp, Srbp
subg $160, $rsp
movg $10, -16(%rbp)
movqg $20, -8 (%rbp)
movg -8 (%rbp), Srax

addg Srax, -8 (%rbp)
movqg -8 (%rbp), Srax
leaveq

Slide 18

int main() {

inta =10;
int b = 20;

a=a+b;

return a;

Slide 19

Compilation Steps (.c to a.out)

text C program (pl. c) High-level language
Compiler (gcc —m32 -S
— P _(g#_) _ _ Interface for speaking
text Assembly program (p1l. s) to CPU

Assembler (gcc -c (or as))

|

binary Object code (pl. o) CPU-specific format
l, (011010...)

Linker (gcc (or 1d))

|

Executable code (a . out)

executable
binary

Instruction Set Architecture (ISA)

ISA (or simply architecture):
Interface between lowest software level and the hardware.

Defines the language for controlling CPU state:

— Defines a set of instructions and specifies their machine code format

— Makes CPU resources (registers, flags) available to the programmer

— Allows instructions to access main memory (potentially with limitations)

— Provides control flow mechanisms (instructions to change what executes
next)

Intel x86 Family

Intel i386 (1985) Intel Core i9 9900k (2018)

e 12 MHz - 40 MHz * ~4,000 MHz

 ~300,000 transistors e ~7,000,000,000 transistors
* Component size: 1.5 um * Component size: 14 nm

Everything in this family uses the same ISA (Same instructions)!

Processor State in Registers

Working memory for currently
executing program

— Temporary data: %rax - %r15

— Current stack frame
— %rbp: base pointer
— %rsp: stack pointer

— Address of next instruction to
execute: %rip

— Status of recent ALU tests
(CF, ZF, SF, OF)

$rax || %r8 || %rl4
srbx || %r9 || %rl5
srex || %rl0

srdx || 5rll

grsi || %$rl2

srdi || $rl3

3rsp

srbp

3rip

CF||ZF | |SF

>Genera| purpose
registers

J

Current stack top

Current stack frame

Program Counter (PC)

oF | Condition codes

(flags)

o

* Registers starting with
64-bit registers
— %rax, %rbx, ..., %rsi, %rdi

 Sometimes, you might only want to
store 32 bits (e.g., int variable)

— You can access the lower 32 bits of a

register with prefix e:
— %eax, %eby, ..., wesi, %e

— with a suffix of d for registers %r8 to %r15

— %r8d, %r9ad, ..., %r15d

Component Registers

14

r are

di

$rax || %r8 || %rl4
srbx || %r9 || %rl5
srex || %rl0

srdx || 5rll

grsi || %$rl2

srdi || $rl3

3rsp

srbp

3rip

CF||ZF | |SF

>Genera| purpose
registers

J

Current stack top

Current stack frame

Program Counter (PC)

oF | Condition codes

(flags)

Assembly Programmer’s View of State

CPU Registers
name value Memory
Srax BUS address value
Srbx
0x00000000
Srex Addresses
- o > 0x00000001
’ Data .
5115 Program:
Srsp Instructions data
Srbp -— .
instrs
srip next instr
addr (PC) stack
$EFLAGS | cond. codes OxfEfEL£fEF

Registers: M
emory:
PC: Program counter (%rip) "

Condition codes (%EFLAGS)
General Purpose (%rax - %r15)

* Byte addressable array
* Program code and data
* Execution stack

Types of assembly instructions

The suffix letters specify

* Data movement how many bytes to move
— Move values between registers and memory (not always necessary,
— Examples: movq — depending on context).
| -> 32 bits
* Load: move data from memory to register q -> 64 bits

e Store: move data from register to memory

Data Movement

Move values between memory and registers or between two registers.

Program Counter (PC): | Memory address of next instr

0:
1:
Instruction Register (IR): Instruction contents (bits) 5.
3:
4.
L Data in wewem > .
atain — N
64-bit Register #0 N-1:
Dat;NirE1 — — L2
WE 64-bit Register #1 f
Data in —
| 64-bit Register #2 U
Dat;/\éll’zl BN . MUX
WE 64-bit Register #3

Register File

Types of assembly instructions

* Arithmetic
— Uses ALU to compute a value
— Examples: addg, subg

Arithmetic

Use ALU to compute a value, store result in register / memory.

Program Counter (PC): | Memory address of next instr

0:
1:
Instruction Register (IR): Instruction contents (bits) ,.
3:
4.
Data in wews p—
ata in — N
64-bit Register #0 N-1:
Dat;NirE1 . MUX ;
WE 64-bit Register #1 f
Data in —
| 64-bit Register #2 U
W m— MUX >
Pata in 64-bit Register #3
WE & __J

Register File

Types of assembly instructions

e Control

— Change PC based on ALU condition code state
— Example: jmpqg

Control

Change PC based on ALU condition code state.

<€

Program Counter (PC): | Memory address of next instr
Instruction Register (IR): Instruction contents (bits)
Data in wewem e A
! 64-bit Register #0
Dat;NirE1 A MU N
WE 64-bit Register #1 f
Data in)
! 64-bit Register #2 U
Dat;/\éll’zl - — MUX L
WE 64-bit Register #3

Register File

P w RO

N-1:

Types of assembly instructions

» Stack/ Function call (We'll cover these in detail later)
— Shortcut instructions for common operations

Addressing Modes

Instructions need to be told where to get operands or store results

Variety of options for how to address those locations

A location might be:
— A register
— A location in memory

In Xx86_64, an instruction can access at most one memory location

Addressing Modes

* Instructions can refer to:
— the name of a register (%rax, %rbx, etc)
— to a constant or “literal” value, starts with S
— (%rax) : accessing memory

* treat the value in %rax as a memory address,

Addressing Mode: Memory

movq (%rcx), %rax

— Use the address in register %rcx to access memory,
— then, store result at that memory address in register %rax

0x0:
name value Ox8:

CPU Registers (Memoly)

0x10:
0x18:

Srax |0

Srex Ox1A68

Ox1A60
) 0x1A68 42
0x1A70
0x1A78

1. Index into memory using the

address in rcx.

OXFFFFFFFF:

Addressing Mode: Memory

movq (%rcx), %rax

— Use the address in register %rcx to access memory,

— then, store result at that memory address in register %rax

CPU Registers

name

value

$rax

42

$rcx

Ox1A068

<€

2. Copy value at that 0O
address to rax. 0x8:

Nv10-

(Memory)

0x18:

Ox1A60
0x1A68
0x1A70
0x1A78

OXFFFFFFFF:

42

Addressing Mode: Register

* |nstructions can refer to the name of a register

e Examples:

— movq %rax, »rl5s
(Copy the contents of %rax into %rl15 -- overwrites %r15, no change to %rax)

— addq %r9, %rdx
(Add the contents of %r9 and %rdx, store the result in %rdx, no change to %r9)

Addressing Mode: Immediate

* Refers to a constant or “literal” value, starts with S
* Allows programmer to hard-code a number
e Can be either decimal (no prefix) or hexadecimal (Ox prefix)

movg $10, %rax
— Put the constant value 10 in register rax.
addg $0xF, %rdx
— Add 15 (OxF) to %rdx and store the result in %rdx.

Addressing Mode: Memory

* Accessing memory requires you to specify which address you want.
— Put the address in a register.
— Access the register with () around the register’s name.

movqg (%rcx), »rax

— Use the address in register %rcx to access memory, store result in
register %rax

Addressing Mode: Displacement

* Like memory mode, but with a constant offset
— Offset is often negative, relative to %rbp

movqg -16(%rbp), %rax

— Take the address in %rbp, subtract 16 from it, index into memory and store
the result in %rax.

Addressing Mode: Displacement

movl -16(%rbp), %rax

— Take the address in %rbp, subtract 16 from it, index into memory and store
the result in %rax.

CPU Registers (Mem Y

0x0:
o0x8:

%rax |© 0x10:
0x18:
%r cx Ox1A68

name value

wrbp_| o470 - > ol
X

Ox1A70
Ox1A78

1. Access address:
Ox1A78 - 24 => Ox1A60

OxFFFFFFFF

Addressing Mode: Displacement

movl -16(%rbp), %rax

— Take the address in %rbp, subtract 16 from it, index into memory and store
the result in %rax.

. (Memory)
CPU Registers 2. Copy value at that Ox0: g
name value address to rax. OX8 :
%rax |11 <€ .
0x18:
%rcx | 9x1A68
Ox1A60 11
y Ox1A70
/°Pbp Ox1A68 42
Ox1A70

Ox1A78 Not
this!

OXFFFFFFFF

Let’s try a few examples...

What will the state of registers and memory look like after
executing these instructions?

sub $16, %rsp

Memory
mov(g $3, —8(%r‘bp) Registers Address Value
mov $10, %rax Name value
<al $1, % rax %rax | o Ox1FFFOOOADO | ©
%rsp | Ox1FFFOOOAEQ Ox1FFFO0OADS
add -8(%rbp), %rax %rbp | Ox1FFFOOOAEQ »Ox1FFFOOOAE® | Ox1FFFOOOAFO
movq %rax, -16(%rbp)

add $16, %rsp

X is stored at rbp-8
y is stored at rbp-16

What will the state of registers and memory look like after
executing these instructions?

Registers Memory
(o)
Squ $16_, Ar‘sp Name Value Address Value
movq $3, -8(%rbp) %rax 2 Ox1FFFOOOADO 3
. A. | %rsp | Ox1FFFOQOAE® Ox1FFFOOOADS 10
movq $10, %rax %bp | Ox1FFFOGPAE® =P OX1FFFOOGAE® | OX1FFFOQGAFO
sal $1, %rax .
Registers Memory
addq —8(%r‘bp) R %r‘ax Name Value Address Value
%rax 10 Ox1FFFOOOADO 23
movq %rax, -16(%rbp) 4
.| %rsp | @Ox1FFFE@AEQ Ox1FFFOOOADS 10
addg $16, %rsp %bp | OX1FFFOPPAE® > Ox1FFFOOGAES Ox1FFFOOOAFQ
Registers Memory
X is stored at r,bp_s Name Value Address Value
_ %rax 23 Ox1FFFOOOADO 23
y isstored at rbp-16 C. | %rsp | ox1FFFo@eAEQ Ox1FFFOOQADS 3
%rbp | Ox1FFFOOOAE® > Ox1FFFOOOAEQ Ox1FFFOOOAFO

Solution

subg $16, %rsp

movq $3, -8(%rbp)
movq $10, %rax

sal $1, %rax

addqg -8(%rbp), %rax
movq %rax, -16(%rbp)
addg $16, %rsp

Registers Memory
X is stored at rbp—8 Name Value Address Value
. %rax | o Ox1FFFOOOADO 23
y is stored at rbp-16 %rsp | .AE@ ox1FFFOQOADS | 3
%rbp | ..AEQ > Ox1FFFOOOAEQ Ox1FFFOOOAF0O

Assembly Visualization Tool

* The authors of Dive into Systems,
including Swarthmore faculty with
help from Swarthmore students,
have developed a tool to help
visualize assembly code execution:

* https://asm.diveintosystems.org

* For this example, use the
arithmetic mode.

subg $16, %rsp

movq $3, -8(%rbp)
movq $10, %rax

sal $1, %rax

addqg -8(%rbp), %rax
movq %rax, -16(%rbp)
addg $16, %rsp

X is stored at rbp-8
y is stored at rbp-16

https://asm.diveintosystems.org/

subg $16, %rsp

movqg $3, -8(%rbp)
movq $10, %rax

sal $1, %rax

addq -8(%rbp), %rax

C code equivalent:

Solution X = 3:

y = X + (10 << 1);

Subtract constant 16 from %rsp

Move constant 3 to address %rbp-8

Move constant 10 to register %rax

Shift the value in %rax left by 1 bit
Add the value at address %rbp-8 to %rax

movq %rax, -16(%rbp) Store the value in %rax at address rbp-16

addg $16, %rsp

X is stored at rbp-8
y is stored at rbp-16

Add constant 16 to %rsp

Registers Memory
Name Value Address Value
%rax | 23 Ox1FFFOOOADO 23
%rsp | ..AEQ Ox1FFFOOOADS 3
%rbp | ..AEQ — Ox1FFFOOOAEQ Ox1FFFOOOAFO

What will the state of registers and memory look like after
executing these instructions?

Registers Memory

mov(%r'bp, %6 CX Name Value Address Value
subg $8, %rcx %rax | @

%rcx | 0 Ox1FFFO0RADO | 8
movq (%rcx), %rax

%rsp Ox1FFFOOOAE® OxX1FFFOOOAD8 | 5
or %rax, -16(%rbp) %rbp | Ox1FFFOOOAEQ = Ox1FFFOOOAE® | Ox1FFFOOOAFO
neg 7%rax

X is stored at %rbp-8
y is stored at %rbp-16
Z is stored at %rbp-24

mov(
mov(q
xor

mov(

mov(q
movq
xor

mov(

How might you implement the following C code in assembly?

-8(%rbp), %rax
-16(%rbp), %rdx
Brax, %rdx
%rax, -24(%rbp)

-8(%rbp), %rax
-16(%rbp), %rdx
%rdx, %rax

%rax, -24(%rbp)

z=x"Ny

Registers Memory
Name Value Address Value
%rax | o Ox1FFFOOOACS (z)
%rdx | 0 Ox1FFFOORADO (y)
%rsp Ox1FFFOOOAE® Ox1FFFOOOADS (x)
%rbp OX1FFFOOOAEQ = Ox1FFFOOOAEQ OX1FFFOOOAFO
movqg -8(%rbp), %rax
movqg -16(%rbp), %rdx
Xor %rax, %rdx
movq %rax, -8(%rbp)
movq -24(%rbp), %rax
movqg -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -8(%rbp)

How might you implement the following C code in assembly?
x=y>>3 | x*8

X is stored at %rbp-8

Registers Memory
. o _
y 1S StorEd at A’rbp 16 Name Value Address Value
7 |S Stored at %rbp_24 %rax | o Ox1FFFOOOACS (z)
%»rdx | 0 Ox1FFFOOOADO (y)
%rsp OX1FFFOOOAEDQ OX1FFFOOOADS8 (x)
%rbp OX1FFFOOOAEQ =r—> OX1FFFOOOAEO OX1FFFOOOAFO

Solutions (other instruction sequences can work tool)

° =y N\
L=y e X =y > 3| x *8

movqg -8(%rbp), %rax

movqg -16(%rbp), %rdx

Xor %rdx, %rax

movqg %rax, -24(%rbp)

mov -8(%rbp), %rax
imul $8, %rax

movq -16(%rbp), %rdx
sar $3, %rdx

or %rax, »rdx

movqg %rdx, -8(%rbp)

Control Flow

* Previous examples focused on:
— data movement (mov, movq)
— arithmetic (add, sub, or, neg, sal, etc.)

* Up next: Jumping!

(Changing which
instruction we
execute next.)

Relevant XKCD

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

OR USE ONE LITILE goto yain_s0b3;
’Gcm::l INSTEAD. ;f’

; Jﬁ *COMPILE= -y
1|

xkcd #292

https://xkcd.com/292/

Unconditional Jumping / Goto

A label is a place you might jump to.

int main(void) { Labels ignored except for goto/jumps.

long a = 10;
(Skipped over if encountered)
long b = 20;
int x = 20;
goto labell; 11:
a =a + b; int y = x + 30;
L2:
labell: printt(“%d, %d\n”, x, y);

return;

How could we use jumps/CCs to implement this C code?

long userval;

scanf(“%ld”, &userval);

if (userval ==42) {
userval = userval + 5;
} else {

userval = userval - 10;

}

(A) cmp $42, %rax

je L2
L1:

sub S10, %rax
jmp DONE
L2:

add S5, %rax
DONE:

Assume userval is stored in
%rax at this point.

(B) cmp 542, %rax

jne L2
L1:

sub $10, %rax
jmp DONE
L2:

add S5, %rax
DONE:

(C) cmp $42, %rax

jne L2
L1:

add S5, %rax
jmp DONE
L2:

sub $10, %rax
DONE:

How could we use jumps/CCs to implement this C code?

long userval;
scanf(“%ld”, &userval);

if (userval ==42) {
userval = userval + 5;
} else {
userval = userval - 10;

}

Assume userval is stored in
%rax at this point.

(A) | cmp $42, %rax
jelL2
L1:

sub S10, %rax
jmp DONE
L2:

add S5, %rax
DONE:

(B) cmp 542, %rax

jne L2
L1:

sub $10, %rax
jmp DONE
L2:

add S5, %rax
DONE:

(C)

cmp $42, %rax
jne L2
L1:

add S5, %rax
jmp DONE
L2:

sub S10, %rax
DONE:

C Loops to x86_64

do-while:
do {
loop body
} while (cond);

C goto translations:

loop:
loop body
if(cond) goto loop

while:

while(cond) {

if(!cond) goto done
loop:
loop body

loop body if(cond) goto loop
} done:
for: init code
if(!cond) goto done
for(init; cond; step){ loop:
loop body loop body
} step

if(cond) goto loop
done:

X =0;

for(i=0; i < 10; i++) {
X=xX+1;

}

z=x%3;

Convert to C goto:

Example goto code

int main(void) {

long a

long b = 20;

goto labell;

a + b;

labell:

return;

for:

for(init; cond; step){
loop body
}

init code
<fill in your answer here>

Convert to C goto:

Example goto code

int main(void) {

long a = 10;
long b = 20;

goto labell;

a + b;

labell:

return;

X =0;

for(i=0; i < 10; i++) {

X=xX+1;

}

z=x%3;

for: init code
if(!Icond) goto done

for(init; cond; step){ loop:

loop body loop body

} step
if(cond) goto loop
done:

Using Jump Instructions

jmp label #unconditional jump (ex. jmp

12)

jge label # conditional jump (ex.if >=) (je, jne,js, jg, ...)

(A label is a place you might jump to.

Try out this code: what does it do?

$rax
Srbx
Srdx

SO,
$4,
SO,
L2

movq
movq
movq

Jjmp

Ll

addg $1,

$rax

L2

addqg
cmp

Jjge

Srdx
Srbx

srax,
srax,
L1

R[%rbx]

Labels ignored except for goto/jumps)

CPU Registers

$rax

Srdx

Srbx

— R[%rax]

Summary

* |SA defines what programmer can do on hardware
— Which instructions are available
— How to access state (registers, memory, etc.)
— This is the architecture’s assembly language

* Inthis course, we’ll be using x86 64

— Instructions for:
* moving data (mov, movl, movq)
* arithmetic (add, sub, imul, or, sal, etc.)
* control (jmp, je, jne, etc.)

— Condition codes for making control decisions
* If the resultis zero (ZF)
* If the result’s first bit is set (negative if signed) (SF)
* |f the result overflowed (assuming unsigned) (CF)
* |If the result overflowed (assuming signed) (OF)

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Announcements

	Reading Quiz
	Slide 3: Reading Quiz
	Slide 8: What we will learn this week

	ISA
	Slide 9: Abstraction
	Slide 10: Abstraction
	Slide 11: Hardware: Control, Storage, ALU circuitry
	Slide 12: How a computer runs a program:
	Slide 13: Compilation Steps (.c to a.out)
	Slide 14: Assembly Code
	Slide 15: Machine Code
	Slide 16: What is “assembly”?
	Slide 17: Object / Executable / Machine Code
	Slide 18: Object / Executable / Machine Code
	Slide 19: Compilation Steps (.c to a.out)

	ISA Instructions
	Slide 20: Instruction Set Architecture (ISA)
	Slide 21: Intel x86 Family
	Slide 22: Processor State in Registers
	Slide 23: Component Registers
	Slide 24: Assembly Programmer’s View of State
	Slide 25: Types of assembly instructions
	Slide 26: Data Movement
	Slide 27: Types of assembly instructions
	Slide 28: Arithmetic
	Slide 29: Types of assembly instructions
	Slide 30: Control
	Slide 31: Types of assembly instructions

	Addressing Modes
	Slide 32: Addressing Modes
	Slide 33: Addressing Modes
	Slide 34: Addressing Mode: Memory
	Slide 35: Addressing Mode: Memory
	Slide 36: Addressing Mode: Register
	Slide 37: Addressing Mode: Immediate
	Slide 38: Addressing Mode: Memory
	Slide 39: Addressing Mode: Displacement
	Slide 40: Addressing Mode: Displacement
	Slide 41: Addressing Mode: Displacement
	Slide 42: Let’s try a few examples...
	Slide 43: What will the state of registers and memory look like after executing these instructions?
	Slide 44: What will the state of registers and memory look like after executing these instructions?
	Slide 45: Solution
	Slide 46: Assembly Visualization Tool
	Slide 47: Solution
	Slide 48: What will the state of registers and memory look like after executing these instructions?
	Slide 49: How might you implement the following C code in assembly? z = x ^ y
	Slide 50: How might you implement the following C code in assembly? x = y >> 3 | x * 8
	Slide 51: Solutions (other instruction sequences can work too!)

	Control Flow
	Slide 52: Control Flow
	Slide 53: Relevant XKCD
	Slide 54: Unconditional Jumping / Goto
	Slide 55: How could we use jumps/CCs to implement this C code?
	Slide 56: How could we use jumps/CCs to implement this C code?
	Slide 57: C Loops to x86_64
	Slide 58: Convert to C goto:
	Slide 59: Convert to C goto:
	Slide 60: Using Jump Instructions
	Slide 61: Summary

