
CS 31: Introduction to Computer Systems

09: C Pointers and Assembly
02-18-2025

Announcements

• Midterm-1 in-class next Tuesday

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

What we will learn this week

1. C Pointers, and Main Memory

• Parts of Program Memory

• C’s support for dynamic memory allocation

• C pointer variables that refer to memory locations

• Where are instructions, stack, etc., in program’s memory space?

2. Instruction set architecture (ISA)

• Interface between programmer and CPU

• Established instruction format (assembly lang)

• Assembly programming (x86_64)

Overview

• How to reference the location of a variable in memory

• Where variables are placed in memory

• How to make this information useful

– Allocating memory

– Calling functions with pointer arguments

Memory

• Behaves like a big array of bytes,
each with an address (bucket #)

• By convention, we divide it into
regions, ordered from lowest to
highest

• The region at the lowest
addresses is usually reserved for
the OS

0x0

0xFFFFFFFF

Operating system

lowest address

highest address

Memory - Text

• After the OS, we store the
program’s code

• Instructions generated by the
compiler

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Memory – (Static) Data

• Next, there’s a fixed-size region
for static data

• This stores static variables that
are known at compile time

– Global variables
• Note: Avoid using global variables!

– Static (hard-coded) strings

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Memory - Stack

• At high addresses, we keep the
stack

• This stores local variables

– The kind we’ve been using in C so far

– e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Memory - Stack

• The stack grows upwards
towards lower addresses

• Example: Allocating array

 int array[4];

• (Note: this differs from
Python)

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[3]

Code (aka. Text)

Data

C Pointers Introduction

What is a pointer?

A pointer is like a mailing address,
it tells you where something is located.

A pointer is an “address” telling you
where that variable is located in memory.

Every object (including simple data types)
reside in the memory of the machine.

Pointers

• Pointer: A variable that stores a reference (index) to a memory location.

• Pointer: sequence of bits that should be interpreted as an index into
memory.

• Where have we seen this before?

Putting a * in front of a variable…

• When you declare the variable:

– Declares the variable to be a pointer

– It stores a memory address

• When you get the value at mem. location in the pointer (dereference):

– Like putting () around a register name

– We follows the pointer out to memory, get the value

– Data we access will be of the specified type
• e.g., pointer (mem. address) to an int, pointer (mem. address) to a float .., etc.

Three Rules for Using Pointer Variables

1. Declare pointer variable: <type> * <name>;
• This is a promise to the compiler:

“This variable holds a memory address and if you follow what it points to in memory
(dereference it), you’ll find an integer”

 int * ptr, x, y;
 char * chptr, s;

• x and y are of type int;

• ptr is a pointer to an int (int *),

• chptr is a pointer to a char (char *)

• ptr and chptr are both pointer variables but are of different types

it doesn’t matter
where the * is

(note the spaces)

Three Rules for Using Pointer Variables

2a. Initialize it (make it point to something):
int x;

int * ptr = &x; // ptr stores address of x or ptr points to x

Stack

x

ptr

123

Address Type Name Value

0xdb4c int x 123

0xdb50 int* ptr 0xdb4c

• & is called the “address of” operator

and returns the address of that variable

• The address is a number/binary data

• We depict this relationship with the arrow

pointing to the memory at that address

0xdb4c

0xdb50

Three Rules for Using Pointer Variables

2a. Initialize it (make it point to something):
int x;

int * ptr = &x; // ptr stores address of x or ptr points to x

int * ptr2;

ptr2 = ptr; // ptr2 gets value of ptr

Stack

x

ptr

123

Address Type Name Value

0xdb4c int x 123

0xdb50 int* ptr 0xdb4c

0xdb54 int * ptr2 0xdb4c

0xdb4c

0xdb50

ptr20xdb54

Suppose we set up a pointer like the one below. Which expression gives

us 5, and which gives us a memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

* in front of a pointer,
gets the value at that
memory location

What will this do?

int main(void) {

 int *ptr;

 printf(“%d”, *ptr);

}

A. Print 0

B. Print a garbage value

C. Segmentation fault

D. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

What will this do?

int main(void) {

 int *ptr;

 printf(“%d”, *ptr);

}

A. Print 0

B. Print a garbage value

C. Segmentation fault

D. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Takeaway: If you’re not immediately assigning your pointers
when you declare it, initialize them to NULL

Three Rules for Using Pointer Variables

3a. Use it: dereference (*) it to set a value
* ptr = 6; //follow ptr out to memory, and get the value

 //at the memory address
Stack

x

ptr

1230xdb4c

0xdb50

ptr20xdb54
NULL

6

y 3

3b. Use it: dereference (*) it to get a value
printf(“%d”, *ptr); // prints 6

int y = * ptr / 2; // y is set to 3

Can you dereference a NULL pointer?
 ptr = NULL;
*ptr = 6; // ptr doesn’t point to valid storage location

0xdb40

CRASH with segfault!

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:

1. “Pass by pointer” function parameters
• By passing a pointer into a function, the function can dereference it so that the changes

persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b; //DRAW STACK BEFORE RETURN
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Function Arguments

Stack

main:
x:

y:

4

7

4

7

It doesn’t matter what func
does with a and b. The value
of x in main doesn’t change.

Pass by Pointer

• Want a function to modify a value on the caller’s stack? Pass a pointer!

• The called function can modify the memory location it points to.
– passing the address of an argument to function:

– pointer parameter holds the address of its argument

– dereference parameter to modify argument’s value

• You’ve already used functions like this:
– readfile library functions and scanf

– pass address of (&) argument to these functions

Function Arguments

• Arguments can be pointers!

– The function gets the address of the passed variable!

void func(int *a) {

 *a = *a + 5;

}

int main(void) {

 int x = 4;

 func(&x);

 printf(“%d”, x);

}

Stack

main:

Pointer Arguments

• Arguments can be pointers!

– The function gets the address of the passed variable!

Stack

main:

x: 4

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Pointer Arguments

• Arguments can be pointers!

– The function gets the address of the passed variable!

Stack

main:

func:
a:

x: 4

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Pointer Arguments

• Arguments can be pointers!

– The function gets the address of the passed variable!

Stack

main:

func:
a:

x: 9

Dereference
pointer, set value
that a points to.

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Pointer Arguments

• Arguments can be pointers!

– The function gets the address of the passed variable!

Stack

main:

x: 9

Prints: 9

Haven’t we seen this
somewhere before?

Pass by Pointer - Example

int main(void){

 int x, y;

 x = 10; y = 20;

 foo(&x, y);

 …

}

void foo(int *b, int c){

 c = 99

 *b = 8; // Stack drawn here

}

main:

foo:

10

20

x

y

Stack

Pass by Pointer - Example

int main(void){

 int x, y;

 x = 10; y = 20;

 foo(&x, y);

 …

}

void foo(int *b, int c){

 c = 99

 *b = 8; // Stack drawn here

}

main:

foo:

10

20

x

y

99

b

c

address of x

8

Stack

pass the value of &x

dereference parameter b to set argument x’s value

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int arr[], int n){
 arr[2] = 6;
}

array base address

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int arr[], int n){
 arr[2] = 6;
}

Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9

array 6

array base address

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(_______ , int n){
 arr[2] = 6;
}

Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9

array 6

alternative declaration?

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int *arr, int n){
 arr[2] = 6;
}

Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9

array 6

pass a pointer instead!

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:

1. “Pass by pointer” function parameters
• By passing a pointer into a function, the function can dereference

it so that the changes persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as

needed during execution

Static vs. Dynamic Memory Allocation

Static

• The compiler can know in advance

• The size of a C variable (based on its
type)

• E.g., hard-coded constants where the
size is known ahead of time

Dynamic

• The compiler cannot know — must
be determined at run time

• User input (or things that depend on
it, e.g., a file)

• E.g., create an array where the size is
typed in by user (or file)

How is dynamically
allocated memory stored?

0x0

0xFFFFFFFF

Operating system

Memory

• Behaves like a big array of bytes,
each with an address (bucket #)

• By convention, we divide it into
regions, ordered from lowest to
highest

• The region at the lowest
addresses is usually reserved for
the OS

0x0

0xFFFFFFFF

Operating system

lowest address

highest address

Memory - Heap

• The heap stores dynamically
allocated variables
– Variables are not allocated on

the Heap, but variables can
point to Heap memory

• When programs explicitly
ask the OS for memory
during runtime, it comes
from the heap
– malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap

• The heap grows
downwards, towards higher
addresses

• I know you want to ask a
question…

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap

• “What happens if the heap
and stack collide?”

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap

• “What happens if the heap
and stack collide?”

• This picture is not to scale –
the gap is huge

• The OS works really hard to
prevent this
– Would likely kill your program

before it could happen

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

What should happen if we try to access an address that’s NOT in one

of these regions?

What should happen if we try to access an address that’s NOT in one

of these regions?

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Segmentation Violation

Segmentation Violation

• Each region also known as
a memory segment.

• Accessing memory outside
a segment is not allowed.

• Can also happen if you try
to access a segment in an
invalid way.
– OS not accessible to users

– Text is usually read-only

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Allocating (Heap) Memory

• The standard C library (#include <stdlib.h>) includes functions for
allocating memory:

void* malloc(size_t size)

– Allocate size bytes on the heap and return a pointer to the beginning of
the memory block. (size_t is an unsigned int of 8 bytes on x86_64)

void free(void *ptr)

– Release the malloc() ed block of memory starting at ptr back to the
system.

Recall: void *

• void* is a special type that represents “generic pointer”.

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign to any pointer

variable.

2. You want to pass a pointer to / return a pointer from a function, but you don’t
know its type.

3. You know better than the compiler that what you’re doing is safe, and you
want to eliminate the warning.

• When malloc() gives you bytes, it doesn’t know or care what you use
them for…

Allocation Size

void* malloc(size_t size)

– Allocate size bytes on the heap and return a pointer to the beginning of
the memory block.

• How much memory should we ask for?

• Use C’s sizeof() operator:

 int *iptr = NULL;

 iptr = malloc(sizeof(int));

sizeof()

• Despite the ()’s, it’s an operator, not a function

– Other operators:
• addition / subtraction (+ / -)

• address of (&)

• indirection (*) (dereference a pointer)

• Works on any type to tell you how much memory it needs.

• Size value is determined at compile time (static).

Why sizeof() is important

struct student {

 char name[40];

 int age;

 double gpa;

}

struct student *bob = NULL;

bob = malloc(sizeof(struct student));

I don’t want to see a number hard-coded in here!

How many bytes is this?
Who cares…
Let the compiler figure that out.

If you call malloc(N) and N bytes are not

available…

A. malloc returns NULL

B. your program is terminated by the OS

C. your program is paused until memory is available

D. your PC catches on fire

If you call malloc(N) and N bytes are not

available…

A. malloc returns NULL

B. your program is terminated by the OS

C. your program is paused until memory is available

D. your PC catches on fire

NULL: A special pointer value.

• You can assign NULL to any pointer, regardless of what type it points to
(it’s a void *).
– int *iptr = NULL;

– float *fptr = NULL;

• NULL is equivalent to pointing at memory address 0x0. This address is
NEVER in a valid segment of your program’s memory.
– This guarantees a segfault if you try to dereference it.

Generally a good ideal to initialize pointers to NULL.

// What happens to these 100 bytes?

int *ptr = malloc(100);

ptr = malloc(2000);

What do you expect to happen to the 100-byte chunk if we do this?

A. The 100-byte chunk will be lost

B. The 100-byte chunk will be automatically freed (garbage collected) by the OS

C. The 100-byte chunk will be automatically freed (garbage collected) by C

D. The 100-byte chunk will be the first 100 bytes of the 2000-byte chunk

E. The 100-byte chunk will be added to the 2000-byte chunk (2100 bytes total)

// What happens to these 100 bytes?

int *ptr = malloc(100);

ptr = malloc(2000);

What do you expect to happen to the 100-byte chunk if we do this?

A. The 100-byte chunk will be lost

B. The 100-byte chunk will be automatically freed (garbage collected) by the OS

C. The 100-byte chunk will be automatically freed (garbage collected) by C

D. The 100-byte chunk will be the first 100 bytes of the 2000-byte chunk

E. The 100-byte chunk will be added to the 2000-byte chunk (2100 bytes total)

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Draw the Stack Diagram

Draw the Stack Diagram

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Create an integer pointer,
named iptr, on the stack.

Assign it NULL.

iptr:

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

Draw the Stack Diagram

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Allocate space for an integer on
the heap (4 bytes), and return a
pointer to that space.

Assign that pointer to iptr.

iptr:

What value is stored in
that area right now?

Who knows… Garbage.

?

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

What value is stored in that
area right now?

Who knows… Garbage

Draw the Stack Diagram

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Use the allocated heap space by
dereferencing the pointer.

iptr:

5

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

Don’t forget to free()!

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Free up the heap memory we used.

iptr:

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

Don’t forget to free() and set to NULL!

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Clean up this pointer, since it’s
no longer valid.

iptr:

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

iptr = NULL;

Can you return an array?

• Suppose you wanted to write a function that copies an array (of 5 integers).
– Given: array to copy

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

As written above, this would be a terrible way of implementing this.
(Don’t worry, compiler won’t let you do this anyway.)

Consider the memory…

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

(In main):

copy = copy_array(…)

copy_array:

main:

copy:

result

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

(In main):

copy = copy_array(…)

Consider the memory…

copy_array:

main:

copy
:

resultresult

Consider the memory…

main:

copy:

When we return from copy_array,
its stack frame is gone!

Left with a pointer to nowhere.

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

(In main):

copy = copy_array(…)

Using the Heap

int *copy_array(int num, int array[]) {

 int *result = malloc(num * sizeof(int));

 result[0] = array[0];

 …

 return result;

}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data
Heap

result:
malloc memory is on the heap.

Doesn’t matter what happens on the
stack (function calls, returns, etc.)

“Memory Leak”

• Memory that is allocated, and not freed, for which there is no longer a
pointer

• In many languages (Java, Python, …), this memory will be cleaned up for
you

– “Garbage collector” finds unreachable memory blocks, frees them

– This can be a time consuming feature

– C does NOT do this for you!

Why doesn’t C do garbage collection?

A. It’s impossible in C

B. It requires a lot of resources

C. It might not be safe to do so (break programs)

D. It hadn’t been invented at the time C was developed

E. Global warming wasn’t a problem when C was invented

Why doesn’t C do garbage collection?

A. It’s impossible in C

B. It requires a lot of resources

C. It might not be safe to do so (break programs)

D. It hadn’t been invented at the time C was developed

E. Global warming wasn’t a problem when C was invented

Memory Bookkeeping

• To free a chunk, you MUST call free() with the same pointer that
malloc()gave you (or a copy)

• The standard C library keeps track of the chunks that have been allocated
to your program

– This is called “metadata” – data about your data

Memory Bookkeeping

• To free a chunk, you MUST call free with the same pointer that
malloc gave you. (or a copy)

• The standard C library keeps track of the chunks that have been
allocated to your program.

– This is called “metadata” – data about your data.

• Wait, where does it store that information?

– It’s not like it can use malloc to get memory…

Summary

• Three rules for using pointer variables

– Declare a pointer

– Initialize it (make it point to a memory address or NULL)

– If you allocate dynamic memory → remember to free!

– reset your pointer to NULL at the end of your function

• Pass by pointer

• Layout of program memory

– Stack vs. Heap

– Segmentation violation

• Dynamic memory allocation: malloc(), free(), and sizeof()

• Memory leaks and bookkeeping

Pointers as Arrays

“Why did you allocate 8 bytes for an int pointer?

– int *iptr = malloc(8);

• Recall: an array variable acts like a pointer to a block of memory. The
number in [] is an offset from bucket 0, the first bucket.

• We can treat pointers in the same way!

Heap

Pointers as Arrays

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

The C compiler knows how big an integer is.

As an alternative way of dereferencing, you can
use []’s like an array.

The C compiler will jump ahead the right
number of bytes, based on the type.

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

Pointers as Arrays

Heap

iptr[0]

iptr[1]

7

iptr[3]

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

3. Treat the result as an int.
(Access the memory location
like a typical dereference.)

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

Pointers as Arrays

• This is one of the most common ways you’ll use pointers:

– You need to dynamically allocate space for a collection of things (ints,
structs, whatever).

– You don’t know how many at compile time.

float *student_gpas = NULL;

student_gpas = malloc(n_students * sizeof(int));

…

student_gpas[0] = …;

student_gpas[1] = …;

Pointers to Pointers

• Why stop at just one pointer?

int **double_iptr;

• “A pointer to a pointer to an int.”
– Dereference once: pointer to an int
– Dereference twice: int

• Commonly used to:
– Allow a function to modify a pointer (data structures)
– Dynamically create an array of pointers.
– (Program command line arguments use this.)

	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Announcements
	Slide 3: Reading Quiz
	Slide 7: What we will learn this week
	Slide 8: Overview
	Slide 9: Memory
	Slide 10: Memory - Text
	Slide 11: Memory – (Static) Data
	Slide 12: Memory - Stack
	Slide 13: Memory - Stack
	Slide 14: C Pointers Introduction
	Slide 15: Pointers
	Slide 16: Putting a * in front of a variable…
	Slide 17: Three Rules for Using Pointer Variables
	Slide 18: Three Rules for Using Pointer Variables
	Slide 19: Three Rules for Using Pointer Variables
	Slide 20: Suppose we set up a pointer like the one below. Which expression gives us 5, and which gives us a memory address?
	Slide 21: What will this do?
	Slide 22: What will this do?
	Slide 23: Three Rules for Using Pointer Variables
	Slide 24: Why Pointers?
	Slide 25: Function Arguments
	Slide 26: Function Arguments
	Slide 27: Pass by Pointer
	Slide 28: Function Arguments
	Slide 29: Pointer Arguments
	Slide 30: Pointer Arguments
	Slide 31: Pointer Arguments
	Slide 32: Pointer Arguments
	Slide 33: Pass by Pointer - Example
	Slide 34: Pass by Pointer - Example
	Slide 35: Passing Arrays
	Slide 36: Passing Arrays
	Slide 37: Passing Arrays
	Slide 38: Passing Arrays
	Slide 39: Passing Arrays
	Slide 40: Why Pointers?
	Slide 41: Static vs. Dynamic Memory Allocation
	Slide 42: How is dynamically allocated memory stored?
	Slide 43: Memory
	Slide 44: Memory - Heap
	Slide 45: Memory - Heap
	Slide 46: Memory - Heap
	Slide 47: Memory - Heap
	Slide 48: What should happen if we try to access an address that’s NOT in one of these regions?
	Slide 49: What should happen if we try to access an address that’s NOT in one of these regions?
	Slide 50: Segmentation Violation
	Slide 51: Segmentation Violation
	Slide 52: Allocating (Heap) Memory
	Slide 53: Recall: void *
	Slide 54: Allocation Size
	Slide 55: sizeof()
	Slide 56: Why sizeof() is important
	Slide 57: If you call malloc(N) and N bytes are not available…
	Slide 58: If you call malloc(N) and N bytes are not available…
	Slide 59: NULL: A special pointer value.
	Slide 60: What do you expect to happen to the 100-byte chunk if we do this?
	Slide 61: What do you expect to happen to the 100-byte chunk if we do this?
	Slide 62
	Slide 63: Draw the Stack Diagram
	Slide 64: Draw the Stack Diagram
	Slide 65: Draw the Stack Diagram
	Slide 66: Don’t forget to free()!
	Slide 67: Don’t forget to free() and set to NULL!
	Slide 68: Can you return an array?
	Slide 69: Consider the memory…
	Slide 70: Consider the memory…
	Slide 71: Consider the memory…
	Slide 72: Using the Heap
	Slide 73: “Memory Leak”
	Slide 74: Why doesn’t C do garbage collection?
	Slide 75: Why doesn’t C do garbage collection?
	Slide 76: Memory Bookkeeping
	Slide 77: Memory Bookkeeping
	Slide 78
	Slide 79: Summary
	Slide 80: Pointers as Arrays
	Slide 81: Pointers as Arrays
	Slide 82: Pointers as Arrays
	Slide 83: Pointers as Arrays
	Slide 84: Pointers as Arrays
	Slide 85: Pointers as Arrays
	Slide 86: Pointers as Arrays
	Slide 87: Pointers as Arrays
	Slide 88: Pointers as Arrays
	Slide 89: Pointers to Pointers

