
CS 31: Introduction to Computer Systems

08: Computer Architecture
02-13-2025

2

“If you can do
logic gates in your
head, please
confirm you are
not a replicant”

http://smbc-comics.com/comic/logic-gates

Announcements

• Lab 3 Checkpoint due today. It will be graded.

• Let me know if your HW group is not added (via email)

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

Abstraction!

• Hide away the complex internals of how the system functions, and focus
on what functionality we expect. I.e., the guaranteed output of a system
given the set of allowed inputs, and treating the functionality of the
system as a black box.

• What are examples of abstractions you have experienced in daily life?

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit
inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Out0

Out1

Out2

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit
inputs
A and B:

Or0

Or2

Or1

Out0

Out1

Out2

Extra input: control signal to select Sum vs. OR

Circuit that takes
in Sum0-2 / Or0-2

and only outputs
one of them,

based on control
signal.

Which of these circuits lets us select between two inputs?

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

A: B:

C:

Which of these circuits lets us select between two inputs?

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

A: B:

C:

CPU so far…

• We can perform arithmetic!

• Storage questions:

– Where to the ALU input values come from?

– Where do we store the result?

– What does this “register” thing mean?

A
L
U

?

?

?

Memory Circuit Goals: Starting Small

• Store a 0 or 1

• Retrieve the 0 or 1 value on demand (read)

• Set the 0 or 1 value on demand (write)

R-S Latch: Stores Value Q

When R and S are both 1: Maintain a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

R-S Latch: Stores Value Q

Assume that the RS Latch currently stores 1.

To write 0 into the latch, set R’s value to 0.

R-S Latch: Stores Value Q

Assume that the RS Latch currently stores 1.

To write 0 into the latch, set R’s value to 0 temporarily.

Gated D Latch

Controls S-R latch writing, ensures S & R never both 0

D: into top NAND, ~D into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Latches used in registers (up next) and SRAM (caches, later)
 Fast, not very dense, expensive
DRAM: capacitor-based

An N-bit Register

• Fixed-size storage (8-bit, 32-bit, 64-bit, etc.)

• Gated D latch lets us store one bit

– Connect N of them to the same write-enable wire!

Data out64-bit Register=

64-bit bus
64-bit Register

“Register file”

• A set of registers for the CPU to store temporary values.

• This is (finally)
something you
will interact with!

• Instructions of form:

– “add R1 + R2, store result in R3”

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Memory Circuit Summary

• Lots of abstraction going on here!

– Gates hide the details of transistors.

– Build R-S Latches out of gates to store one bit.

– Combining multiple latches gives us N-bit register.

– Grouping N-bit registers gives us register file.

• Register file’s simple interface:

– Read Rx’s value, use for calculation

– Write Ry’s value to store result

CPU so far…
We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.
Remaining questions:
 Which register(s) do we use as input to ALU?
 Which operation should the ALU perform?
 To which register should we store the result?

All this info comes
from the program:
a series of instructions.

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

64-bit Register #0

64-bit Register #1

64-bit Register #2

64-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

CPU Game Plan

• Fetch instruction from memory

• Decode what the instruction is telling us to do
– Tell the ALU what it should be doing

– Find the correct operands

• Execute the instruction (arithmetic, etc.)

• Store the result

Program State

Let’s add two more special registers (not in register file) to keep track of program.

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Fetching instructions.

A
L
U

Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Decoding instructions.

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

OP Code tells
ALU which
operation to
perform.

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Register ID #’s
specify input
arguments.

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Executing instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Storing results.

We’ve just computed something. Where do we put it?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result location
specifies
where to store
ALU output.

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Why do we need a program counter? Can’t we just start at 0 and count up

one at a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward by
more than one.

C. Some instructions might adjust the PC backwards.

D. We need the PC for some other reason(s).

Why do we need a program counter? Can’t we just start at 0 and count up

one at a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward by
more than one.

C. Some instructions might adjust the PC backwards.

D. We need the PC for some other reason(s).

Storing results.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result might be:
 Memory
 Register
 PC

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Clocking

• Need to periodically transition from one instruction to the next.

• It takes time to fetch from memory, for signal to propagate through
wires, etc.

– Too fast: don’t fully compute result

– Too slow: waste time

Clock Driven System

• Everything in is driven by a discrete clock

– clock: an oscillator circuit, generates hi low pulse

– clock cycle: one hi-low pair

– Clock determines how fast system runs
• Processor can only do one thing per clock cycle

– Usually just one part of executing an instruction

• 1GHz processor:

1 billion cycles/second → 1 cycle every nanosecond

Clock

1 cycle

1 0 1 0 1 0 1 0 1 0

Cycle Time: Laundry Analogy

• Discrete stages: fetch, decode, execute, store

• Analogy (laundry): washer, dryer, folding, dresser

W Dy F Dr

4 Hours (each stage takes 1 hour)

You have big problems if you have
millions of loads of laundry to do….

Laundry

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

4-hour cycle time.

Finishes a laundry load every cycle.

(6 laundry loads per day)

Pipelining (Laundry)

W

DyW

FDyW

DrFDyW

DrFDyW

1 Hour

1st hour:

2nd hour:

3rd hour:

4th hour:

5th hour:

Steady state: One load finishes every hour!
(Not every four hours like before.)

Pipelining (CPU)

F

DF

EDF

SEDF

SEDF

1 Nanosecond

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!
(Clock rate can be faster.)

CPU Stages: fetch, decode,
 execute, store results

Pipelining

(For more details about this and the other things we talked about here,
take architecture.)

Slide 44

Overview

• How to reference the location of a variable in memory

• Where variables are placed in memory

• How to make this information useful

– Allocating memory

– Calling functions with pointer arguments

Pointers

• Pointer: A variable that stores a
reference to (the address of) a
memory location.

• Pointer: sequence of bits that
should be interpreted as an index
into memory.

• Where have we seen this before?

• A pointer is like a mailing
address, it tells you where a
variable is located in memory.

Recall: Arrays

int january_temps[31]; // Daily high temps

• Array variable name means, to the compiler, the
beginning of the memory chunk. (address)

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Recall: Program Counter

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

X86_64 refers to
the PC as %rip.

Instruction
Pointer

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Recall: Addressing Mode: Memory

movl (%rcx), %rax

– Use the address in register %rcx to access memory, store result in
register %rax

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

Pointers in C

• Like any other variable, must be declared:

– Using the format: type *name;

• Example:

– int *myptr;

– This is a promise to the compiler:
• This variable holds a memory address. If you follow what it points to in

memory (dereference it), you’ll find an integer.

• A note on syntax:

– int* myptr; int * myptr; int *myptr;

– These all do the same thing. (note the * position)

Dereferencing a Pointer

• To follow the pointer, we dereference it.

• Dereferencing re-uses the * symbol.

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an integer in memory.

Putting a * in front of a variable…

• When you declare the variable:

– Declares the variable to be a pointer

– It stores a memory address

• When you use the variable (dereference):

– Like putting [] around a register name

– Follows the pointer out to memory

– Acts like the specified type (e.g., int, float, etc.)

Suppose we set up a pointer like the one below.

Which expression gives us 5, and which gives us a

memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

Suppose we set up a pointer like the one below.

Which expression gives us 5, and which gives us a

memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

So, we declared a pointer…

• How do we make it point to something?

1. Assign it the address of an existing variable (&)

2. Copy some other pointer

3. Allocate some memory and point to it

• First, let’s look at how memory is organized.
(From the perspective of one executing program.)

Memory

• Behaves like a big array of bytes,
each with an address (bucket #).

• By convention, we divide it into
regions.

• The region at the lowest
addresses is usually reserved for
the OS.

0x0

0xFFFFFFFF

Operating system

Memory - Text

• After the OS, we store the
program’s code.

• Instructions generated by the
compiler.

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Memory – (Static) Data

• Next, there’s a fixed-size region
for static data.

• This stores static variables that
are known at compile time.

– Global variables

– Static (hard-coded) strings

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Memory - Stack

• At high addresses, we keep the
stack.

• This stores local (automatic)
variables.

– The kind we’ve been using in C so
far.

– e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Memory - Stack

• The stack grows upwards
towards lower addresses
(negative direction).

• Example: Allocating array

– int array[4];

• (Note: this differs from
Python.)

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data

Memory - Heap

• The heap stores
dynamically allocated
variables.

• When programs
explicitly ask the OS for
memory, it comes from
the heap.

– malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

If we can declare variables on the stack, why do we need to

dynamically allocate things on the heap?

A. There is more space available on the heap.

B. Heap memory is better. (Why?)

C. We may not know a variable’s size in advance.

D. The stack grows and shrinks automatically.

E. Some other reason.

If we can declare variables on the stack, why do we need to

dynamically allocate things on the heap?

A. There is more space available on the heap.

B. Heap memory is better. (Why?)

C. We may not know a variable’s size in advance. (Primary reason)

D. The stack grows and shrinks automatically. (Return from
function: can’t return large chunk of memory safely)

E. Some other reason.

"Static" vs. "Dynamic"

Static

• The compiler can know in advance.

• The size of a C variable (based on its
type).

• Hard-coded constants.

Dynamic

• The compiler cannot know -- must be
determined at run time.

• User input (or things that depend on
it).

• E.g., create an array where the size is
typed in by user (or file).

Memory - Heap

• The heap grows
downwards, towards
higher addresses.

• I know you want to ask
a question…

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap

• “What happens if the
heap and stack collide?”

• This picture is not to scale
– the gap is huge.

• The OS works really hard
to prevent this.
– Would likely kill your

program before it could
happen.

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Which region would we expect the PC register

(program counter) to point to?

A. OS

B. Text

C. Data

D. Heap

E. Stack

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Which region would we expect the PC register

(program counter) to point to?

A. OS

B. Text

C. Data

D. Heap

E. Stack

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

What should happen if we try to access an address

that’s NOT in one of these regions?

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

What should happen if we try to access an address

that’s NOT in one of these regions?

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Segmentation Violation

Segmentation Violation

• Each region also known as
a memory segment.

• Accessing memory outside
a segment is not allowed.

• Can also happen if you try
to access a segment in an
invalid way.
– OS not accessible to users

– Text is usually read-only

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

So we declared a pointer…

• How do we make it point to something?

1. Assign it the address of an existing variable

2. Copy some other pointer

3. Allocate some memory and point to it

The Address Of (&)

• You can create a pointer to anything by taking its address with the
address of operator (&).

The Address Of (&)

int main(void) {

 int x = 7;

 int *iptr = &x;

 return 0;

}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

What would this print?

int main(void) {
 int x = 7;
 int *iptr = &x;
 int *iptr2 = &x;

 printf(“%d %d ”, x, *iptr);
 *iptr2 = 5;
 printf(“%d %d ”, x, *iptr);

 return 0;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

A. 7 7 7 7 B. 7 7 7 5 C. 7 7 5 5 D. Something else

What would this print?

int main(void) {
 int x = 7;
 int *iptr = &x;
 int *iptr2 = &x;

 printf(“%d %d ”, x, *iptr);
 *iptr2 = 5;
 printf(“%d %d ”, x, *iptr);

 return 0;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

A. 7 7 7 7 B. 7 7 7 5 C. 7 7 5 5 D. Something else

	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2
	Slide 3: Announcements
	Slide 4: Reading Quiz
	Slide 11: Abstraction!
	Slide 12: Simple 3-bit ALU: Add and bitwise OR
	Slide 13: Simple 3-bit ALU: Add and bitwise OR
	Slide 14: Which of these circuits lets us select between two inputs?
	Slide 15: Which of these circuits lets us select between two inputs?
	Slide 16: CPU so far…
	Slide 17: Memory Circuit Goals: Starting Small
	Slide 18: R-S Latch: Stores Value Q
	Slide 19: R-S Latch: Stores Value Q
	Slide 20: R-S Latch: Stores Value Q
	Slide 21: Gated D Latch
	Slide 22: An N-bit Register
	Slide 23: “Register file”
	Slide 24: Memory Circuit Summary
	Slide 25: CPU so far…
	Slide 26: CPU Game Plan
	Slide 27: Program State
	Slide 28: Fetching instructions.
	Slide 29: Decoding instructions.
	Slide 30: Decoding instructions.
	Slide 31: Decoding instructions.
	Slide 32: Executing instructions.
	Slide 33: Storing results.
	Slide 34: Why do we need a program counter? Can’t we just start at 0 and count up one at a time from there?
	Slide 35: Why do we need a program counter? Can’t we just start at 0 and count up one at a time from there?
	Slide 36: Storing results.
	Slide 37: Clocking
	Slide 38: Clock Driven System
	Slide 39: Cycle Time: Laundry Analogy
	Slide 40: Laundry
	Slide 41
	Slide 42: Pipelining (Laundry)
	Slide 43: Pipelining (CPU)
	Slide 44: Pipelining
	Slide 45: Overview
	Slide 46: Pointers
	Slide 47: Recall: Arrays
	Slide 48: Recall: Program Counter
	Slide 49: Recall: Addressing Mode: Memory
	Slide 50: Pointers in C
	Slide 51: Dereferencing a Pointer
	Slide 52: Putting a * in front of a variable…
	Slide 53: Suppose we set up a pointer like the one below. Which expression gives us 5, and which gives us a memory address?
	Slide 54: Suppose we set up a pointer like the one below. Which expression gives us 5, and which gives us a memory address?
	Slide 55: So, we declared a pointer…
	Slide 56: Memory
	Slide 57: Memory - Text
	Slide 58: Memory – (Static) Data
	Slide 59: Memory - Stack
	Slide 60: Memory - Stack
	Slide 61: Memory - Heap
	Slide 62: If we can declare variables on the stack, why do we need to dynamically allocate things on the heap?
	Slide 63: If we can declare variables on the stack, why do we need to dynamically allocate things on the heap?
	Slide 64: "Static" vs. "Dynamic"
	Slide 65: Memory - Heap
	Slide 66: Memory - Heap
	Slide 67: Which region would we expect the PC register (program counter) to point to?
	Slide 68: Which region would we expect the PC register (program counter) to point to?
	Slide 69: What should happen if we try to access an address that’s NOT in one of these regions?
	Slide 70: What should happen if we try to access an address that’s NOT in one of these regions?
	Slide 71: Segmentation Violation
	Slide 72: Segmentation Violation
	Slide 73: So we declared a pointer…
	Slide 74: The Address Of (&)
	Slide 75: The Address Of (&)
	Slide 76: What would this print?
	Slide 77: What would this print?

