
CS 31: Introduction to Computer Systems

06: Computer Architecture
02-06-2025

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

What we will learn this week

1. Introduction to C
• Data organization and strings
• Functions

2. Computer Architecture
• Machine memory models
• Digital signals
• Logic gates

Von Neumann Model
5 units connected by buses (wires) to communicate

Processing & Control Units:

• implement CPU \execute program instructions on program data

Memory: stores program instructions and data

• memory is addressable: addr 0, 1, 2, ...

Input, Output: interface to compute

• trigger actions: load program, initiate execution, ...

• display/store results: to terminal, save to disk, ...

Our Goal: Build a CPU (model)

Start with very simple functionality, and add complexity

CPU

ALU, Storage, Control

Complex Circuits

Simple Circuits

Basic Logic Gates

Build up complex
Functionality

Starting with simple
Functionality

Abstraction!

• Hide away the complex internals of how the system functions, and focus
on what functionality we expect. I.e., the guaranteed output of a system
given the set of allowed inputs, and treating the functionality of the
system as a black box.

• What are examples of abstractions you have experienced in daily life?

XOR Circuit: Abstraction

A^B == (~A & B) | (A & ~B)

A

B
out = A^B

A:0 B:0 A^B:

A:0 B:1 A^B:

A:1 B:0 A^B:

A:1 B:1 A^B:

=

XOR Circuit: Abstraction!

A^B == (~A & B) | (A & ~B)

out = A^B

A

B

XOR out = A^BA

B

Treat XOR Circuit as a
 building block for other
circuits!

Recall Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality

– Example: adder circuit to add two values together

2. Storage: to store binary values

– Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution

– Example: circuitry to fetch the next instruction from memory and decode it

Recall Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality

– Example: adder circuit to add two values together

Start with ALU components (e.g., adder circuit, bitwise operator circuits)

Combine component circuits into ALU!

Which of these circuits is a one-bit adder?

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Which of these circuits is a one-bit adder?

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

More than one bit?

• When adding, sometimes have carry in too

 1111

 0011010

 + 0001111

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?

When is Cout 1?

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?
~Cin & (A^B) | Cin & ~(A^B) == (Cin ^ (A^B))

When is Cout 1?

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?
~Cin & (A^B) | Cin & ~(A^B) == (Cin ^ (A^B))

When is Cout 1?

(A & B) | ((A^B) & Cin)

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?
~Cin & (A^B) | Cin & ~(A^B) == (Cin ^ (A^B))

When is Cout 1?

(A & B) | ((A^B) & Cin)

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

1-bit
adder

Cin

Cout

A

B Sum

One-bit (full) adder

• Need to include:

 carry-in and carry-out

= 1-bit
adder

Cin

Cout

A

B Sum

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Multi-bit Adder (Ripple-carry Adder)

1-bit
adder

0

Cout

A0

B0 Sum0

1-bit
adder

Cout

A1

B1 Sum1

1-bit
adder

Cout

A3

B3 Sum3

1-bit
adder

Cout

A2

B2 Sum2

…

1-bit
adder

Cout

AN-1

BN-1 SumN-1

Three-bit Adder (Ripple-carry Adder)

1-bit
adder

0

0

1

1-bit
adder

1

1

1-bit
adder

0

0

010
+ 011 = 3-bit

adder

A0

A1

A2

B0

B1

B2

Carry out

Carry in

Sum0

Sum1

Sum2

Arithmetic Logic Unit (ALU)

• One component that knows how to manipulate bits in multiple ways

– Addition

– Subtraction

– Multiplication / Division

– Bitwise AND, OR, NOT, etc.

• Built by combining components

– Take advantage of sharing HW when possible
(e.g., subtraction using adder)

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Out0

Out1

Out2

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit
inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Out0

Out1

Out2

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit
inputs
A and B:

Or0

Or2

Or1

Out0

Out1

Out2

Extra input: control signal to select Sum vs. OR

Circuit that takes
in Sum0-2 / Or0-2

and only outputs
one of them,

based on control
signal.

Which of these circuits lets us select between two inputs?

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

A: B:

C:

Which of these circuits lets us select between two inputs?

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

A: B:

C:

Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

• Control signal c, chooses the input for output

• When c is 1: choose a, when c is 0: choose b

out
b

c

a out = (c & a)|(~c &b)

1 bit 2-way MUX

N-Way Multiplexor

Choose one of N inputs, need log2 N select bits

D0

D3

Out

c0

c1

MUX4

D2

D1

4-Way Multiplexor

C Input to
 choose D0

D0

c1
c0

.

c1 c2 Output

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Example 1-bit, 4-way MUX

• When select input is 2 (0b10): C chosen as output

Out

A

s0

B

1 bit 4-way MUXs1

D

C

s

Out

1 bit
4-way
MUX

A
B
C
D

S Out

0 A

1 B

2 C

3 D
C

0

1

11 C

0

0

0

=

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Multiplexor!

ALU: Arithmetic Logic Unit

• Arithmetic and logic circuits: ADD, SUB, NOT, …
• Control circuits: use op bits to select output
• Circuits around ALU:

– Select input values X and Y from instruction or register
– Select op bits from instruction to feed into ALU
– Feed output somewhere

OF

A
L
U

Y

X op Y

op bits: selects which op to output

Output flags: set as a
side effect of op
(e.g., overflow detected)

ADD 2 3

X

CPU
Instruction:

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality

– Example: adder circuit to add two values together

2. Storage: to store binary values

– Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution

– Example: circuitry to fetch the next instruction from memory and decode it

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

2. Storage: to store binary values

– Example: set of CPU registers (“register file”) to store temporary values

Give the CPU a “scratch space” to perform calculations and keep track of
the state its in.

CPU so far…

• We can perform arithmetic!

• Storage questions:

– Where to the ALU input values come from?

– Where do we store the result?

– What does this “register” thing mean?

A
L
U

?

?

?

Memory Circuit Goals: Starting Small

• Store a 0 or 1

• Retrieve the 0 or 1 value on demand (read)

• Set the 0 or 1 value on demand (write)

R-S Latch: Stores Value Q

When R and S are both 1: Maintain a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

R-S Latch: Stores Value Q

Assume that the RS Latch currently stores 1.

To write 0 into the latch, set R’s value to 0.

Gated D Latch

Controls S-R latch writing, ensures S & R never both 0

D: into top NAND, ~D into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Latches used in registers (up next) and SRAM (caches, later)
 Fast, not very dense, expensive
DRAM: capacitor-based

An N-bit Register

• Fixed-size storage (8-bit, 32-bit, 64-bit, etc.)

• Gated D latch lets us store one bit

– Connect N of them to the same write-enable wire!

Data out64-bit Register=

64-bit bus
64-bit Register

“Register file”

• A set of registers for the CPU to store temporary values.

• This is (finally)
something you
will interact with!

• Instructions of form:

– “add R1 + R2, store result in R3”

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Memory Circuit Summary

• Lots of abstraction going on here!

– Gates hide the details of transistors.

– Build R-S Latches out of gates to store one bit.

– Combining multiple latches gives us N-bit register.

– Grouping N-bit registers gives us register file.

• Register file’s simple interface:

– Read Rx’s value, use for calculation

– Write Ry’s value to store result

CPU so far…
We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.
Remaining questions:
 Which register(s) do we use as input to ALU?
 Which operation should the ALU perform?
 To which register should we store the result?

All this info comes
from the program:
a series of instructions.

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

64-bit Register #0

64-bit Register #1

64-bit Register #2

64-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Recall: Von Neumann Model

CPU
(Control and
Arithmetic)

Input/Output

Program
and
Data

Memory

We’re building this.
Our program (instructions) live
here. We’ll assume for now that
we can access it like an array.

0:

1:

2:

3:

4:

…

N-1:

Mem Addresses
(buckets)

Digital Circuits - Building a CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

Circuits are built from Logic Gates which are built from
transistors

HW Circuits

Logic Gates

Transistor

Digital Circuits - Building a CPU

Three main classifications of HW circuits:

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

Keep track of where we are in the program.

Execute instruction, move to next.

HW Circuits

Logic Gates

Transistor

Control Unit

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

 Which register(s) do we use as input to ALU?

 Which operation should the ALU perform?

 To which register should we store the result?

All this info
comes from our
program:
a series of
instructions.

CPU Game Plan

• Fetch instruction from memory

• Decode what the instruction is telling us to do
– Tell the ALU what it should be doing

– Find the correct operands

• Execute the instruction (arithmetic, etc.)

• Store the result

Program State

Let’s add two more special registers (not in register file) to keep track of program.

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Fetching instructions.

A
L
U

Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Decoding instructions.

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

OP Code tells
ALU which
operation to
perform.

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Register ID #’s
specify input
arguments.

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Executing instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Storing results.

We’ve just computed something. Where do we put it?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result location
specifies
where to store
ALU output.

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Why do we need a program counter? Can’t we just start at 0 and count up

one at a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward by
more than one.

C. Some instructions might adjust the PC backwards.

D. We need the PC for some other reason(s).

Why do we need a program counter? Can’t we just start at 0 and count up

one at a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward by
more than one.

C. Some instructions might adjust the PC backwards.

D. We need the PC for some other reason(s).

Storing results.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result might be:
 Memory
 Register
 PC

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Clocking

• Need to periodically transition from one instruction to the next.

• It takes time to fetch from memory, for signal to propagate through
wires, etc.

– Too fast: don’t fully compute result

– Too slow: waste time

Clock Driven System

• Everything in is driven by a discrete clock

– clock: an oscillator circuit, generates hi low pulse

– clock cycle: one hi-low pair

– Clock determines how fast system runs
• Processor can only do one thing per clock cycle

– Usually just one part of executing an instruction

• 1GHz processor:

1 billion cycles/second → 1 cycle every nanosecond

Clock

1 cycle

1 0 1 0 1 0 1 0 1 0

Cycle Time: Laundry Analogy

• Discrete stages: fetch, decode, execute, store

• Analogy (laundry): washer, dryer, folding, dresser

W Dy F Dr

4 Hours (each stage takes 1 hour)

You have big problems if you have
millions of loads of laundry to do….

Laundry

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

4-hour cycle time.

Finishes a laundry load every cycle.

(6 laundry loads per day)

Pipelining (Laundry)

W

DyW

FDyW

DrFDyW

DrFDyW

1 Hour

1st hour:

2nd hour:

3rd hour:

4th hour:

5th hour:

Steady state: One load finishes every hour!
(Not every four hours like before.)

Pipelining (CPU)

F

DF

EDF

SEDF

SEDF

1 Nanosecond

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!
(Clock rate can be faster.)

CPU Stages: fetch, decode,
 execute, store results

Pipelining

(For more details about this and the other things we talked about here,
take architecture.)

Slide 71

Today

• How to directly interact with hardware

• Instruction set architecture (ISA)

– Interface between programmer and CPU

– Established instruction format (assembly lang)

• Assembly programming (x86_64)

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface

Hardware: Control, Storage, ALU circuitry
Slide 75

Program Counter (PC): Address 0

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

• acts on instruction
bits to execute
individual instructions

• PC value used to
determine next
instruction to execute

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

How a computer runs a program:

• We know: How HW Executes Instructions:

• This Week: Instructions and ISA

– Program Encoding: C code to assembly code

– Learn IA32 Assembly programming

Program

Operating System

Computer Hardware

76

Interaction
Between
Programs
and HW

Compilation Steps (.c to a.out)

text

executable
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step: gcc –m32 p1.c

-m32 tells gcc to compile for
32-bit Intel machines

Compiler (gcc –o)

Reality is more complex:
there are intermediate steps!

Slide 77

Compile

machine code instructions

Compilation Steps (.c to a.out)

text

text

executable
binary

Compiler (gcc -S)

C program (p1.c)

Assembly program (p1.s)

Executable code (a.out)

You can see the results of
intermediate compilation
steps using different gcc flags

CS75

Slide 78

machine code instructions

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

Slide 79

machine code instructions

Machine Code

Binary (0’s and 1’s) Encoding of ISA Instructions

– some bits: encode the instruction (opcode bits)

– others encode operand(s)
 (eg) 01001010 opcode operands

 01 001 010
 ADD %r1 %r2

– different bits fed
through different
CPU circuitry:

MUX
Register #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

80

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Assembly Code

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Human Readable Form
of Machine Code

Slide 81

machine code instructions

What is “assembly”?

Assembly is the
“human readable”
form of the
instructions a
machine can
understand.

objdump –d a.out

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $10, -16(%rbp)

movq $20, -8(%rbp)

movq -8(%rbp), $rax

addq $rax, -8(%rbp)

movq -8(%rbp), %rax

leaveq

Object / Executable / Machine Code

Assembly Machine Code (Hexadecimal)

55

89 E5

83 EC 10

C7 45 F8 0A 00 00 00

C7 45 FC 14 00 00 00

8B 45 FC

01 45 F8

B8 45 F8

C9

Slide 83

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $10, -16(%rbp)

movq $20, -8(%rbp)

movq -8(%rbp), $rax

addq $rax, -8(%rbp)

movq -8(%rbp), %rax

leaveq

Object / Executable / Machine Code

Assembly

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $10, -16(%rbp)

movq $20, -8(%rbp)

movq -8(%rbp), $rax

addq $rax, -8(%rbp)

movq -8(%rbp), %rax

leaveq

Machine Code (Hexadecimal)

55

89 E5

83 EC 10

C7 45 F8 0A 00 00 00

C7 45 FC 14 00 00 00

8B 45 FC

01 45 F8

B8 45 F8

C9

int main() {
 int a = 10;
 int b = 20;

 a = a + b;

 return a;
}

Slide 84

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

High-level language

CPU-specific format
(011010…)

Interface for speaking
to CPU

Slide 85

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:

– Defines a set of instructions and specifies their machine code format

– Makes CPU resources (registers, flags) available to the programmer

– Allows instructions to access main memory (potentially with limitations)

– Provides control flow mechanisms (instructions to change what executes
next)

Instruction Set Architecture (ISA)

The agreed-upon interface between all software that runs on the machine
and the hardware that executes it.

I/O systemCPU / Processor

Compiler

Operating
System

Application / Program

Digital Circuits

Logic Gates

Instruction Set
 Architecture

Instruction Set Architecture (ISA)

The agreed-upon interface between all software that runs on the machine
and the hardware that executes it.

Slide 88

High-level language

Hardware
Implementation

Instruction Set
 Architecture

ISA Examples

• Intel IA-32 (80x86)

• ARM

• MIPS

• PowerPC

• IBM Cell

• Motorola 68k

• Intel x86_64

• Intel IA-64 (Itanium)

• VAX

• SPARC

• Alpha

• IBM 360

Intel x86 Family

Intel i386 (1985)

• 12 MHz - 40 MHz

• ~300,000 transistors

• Component size: 1.5 µm

Intel Core i9 9900k (2018)

• ~4,000 MHz

• ~7,000,000,000 transistors

• Component size: 14 nm

Everything in this family uses the same ISA (Same instructions)!

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:

– Defines a set of instructions and specifies their machine code format

– Makes CPU resources (registers, flags) available to the programmer

– Allows instructions to access main memory (potentially with limitations)

– Provides control flow mechanisms (instructions to change what executes
next)

Processor State in Registers

Working memory for currently
executing program
– Temporary data: %rax - %r15

– Current stack frame

– %rbp: base pointer

– %rsp: stack pointer

– Address of next instruction to
execute: %rip

– Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Component Registers

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

• Registers starting with “r” are
64-bit registers
– %rax, %rbx, …, %rsi, %rdi

• Sometimes, you might only want to
store 32 bits (e.g., int variable)

– You can access the lower 32 bits of a
register with prefix e:

– %eax, %ebx, …, %esi, %edi

– with a suffix of d for registers %r8 to %r15

– %r8d, %r9d, …, %r15d

Assembly Programmer’s View of State

CPU
Memory

Addresses

Data

Instructions

Registers:

 PC: Program counter (%rip)

Condition codes (%EFLAGS)

General Purpose (%rax - %r15)

Memory:

• Byte addressable array

• Program code and data

• Execution stack

name value

%rax

%rbx

%rcx

%rdx

…

%r15

%rsp

%rbp

%rip next instr

addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:

 data

 instrs

 stack

0xffffffff

Registers

BUS

Types of assembly instructions

• Data movement

– Move values between registers and memory

– Examples: movq

• Load: move data from memory to register

• Store: move data from register to memory

The suffix letters specify
how many bytes to move

(not always necessary,
depending on context).

l -> 32 bits
q -> 64 bits

Data Movement

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.

Types of assembly instructions

• Data movement

– Move values between registers and memory

• Arithmetic

– Uses ALU to compute a value

– Examples: addq, subq

Arithmetic

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in register / memory.

Types of assembly instructions

• Data movement

– Move values between registers and memory

• Arithmetic

– Uses ALU to compute a value

• Control

– Change PC based on ALU condition code state

– Example: jmpq

Control

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.

Types of assembly instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value

• Control
– Change PC based on ALU condition code state

• Stack / Function call (We’ll cover these in detail later)
– Shortcut instructions for common operations

Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:

– A register

– A location in memory

• In x86_64, an instruction can access at most one memory location

Addressing Modes

• Instructions can refer to:

– the name of a register (%rax, %rbx, etc)

– to a constant or “literal” value, starts with $

– (%rax) : accessing memory
• treat the value in %rax as a memory address,

Addressing Mode: Memory

movq (%rcx), %rax

– Use the address in register %rcx to access memory,

– then, store result at that memory address in register %rax

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the
address in rcx.

0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Addressing Mode: Memory

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

movq (%rcx), %rax

– Use the address in register %rcx to access memory,

– then, store result at that memory address in register %rax

Addressing Mode: Register

• Instructions can refer to the name of a register

• Examples:
– movq %rax, %r15

(Copy the contents of %rax into %r15 -- overwrites %r15, no change to %rax)

– addq %r9, %rdx
(Add the contents of %r9 and %rdx, store the result in %rdx, no change to %r9)

Addressing Mode: Immediate

• Refers to a constant or “literal” value, starts with $

• Allows programmer to hard-code a number

• Can be either decimal (no prefix) or hexadecimal (0x prefix)

movq $10, %rax
– Put the constant value 10 in register rax.

addq $0xF, %rdx
– Add 15 (0xF) to %rdx and store the result in %rdx.

Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.

– Put the address in a register.

– Access the register with () around the register’s name.

movq (%rcx), %rax

– Use the address in register %rcx to access memory, store result in
register %rax

Addressing Mode: Displacement

• Like memory mode, but with a constant offset

– Offset is often negative, relative to %rbp

movq -24(%rbp), %rax

– Take the address in %rbp, subtract 24 from it, index into memory and store
the result in %rax.

Addressing Mode: Displacement

movl -24(%rbp), %rax

– Take the address in %rbp, subtract 24 from it, index into memory and store
the result in %rax.

(Memory)

name value

%rax 0

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78 Not this!

…

0xFFFFFFFF:

Addressing Mode: Displacement

movl -24(%rbp), %rax

– Take the address in %rbp, subtract 24 from it, index into memory and store
the result in %rax.

(Memory)

name value

%rax 11

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

2. Copy value at that
address to rax.

Let’s try a few examples...

What will the state of registers and memory look like after

executing these instructions?

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

…

What will the state of registers and memory look like after

executing these instructions?

Registers

Name Value

%rax 2

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 3

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 10

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 23

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

A.

B.

C.

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Solution

Registers

Name Value

%rax 0

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Assembly Visualization Tool

• The authors of Dive into Systems,
including Swarthmore faculty with
help from Swarthmore students,
have developed a tool to help
visualize assembly code execution:

• https://asm.diveintosystems.org

• For this example, use the
arithmetic mode.

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

https://asm.diveintosystems.org/

Solution

sub $16, %rsp Subtract constant 16 from %rsp

movq $3, -8(%rbp) Move constant 3 to address %rbp-8

mov $10, %rax Move constant 10 to register %rax

sal $1, %rax Shift the value in %rax left by 1 bit

add -8(%rbp), %rax Add the value at address %rbp-8 to %rax

movq %rax, -16(%rbp) Store the value in %rax at address rbp-16

add $16, %rsp Add constant 16 to %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 23

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

C code equivalent:
x = 3;

y = x + (10 << 1);

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

What will the state of registers and memory look like after

executing these instructions?

…

mov %rbp, %rcx

sub $8, %rcx

movq (%rcx), %rax

or %rax, -16(%rbp)

neg %rax

Registers

Name Value

%rax 0

%rcx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 8

0x1FFF000AD8 5

0x1FFF000AE0 0x1FFF000AF0

…

How might you implement the following C code in assembly?

z = x ^ y

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -24(%rbp)

A:
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -8(%rbp)

C:

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -24(%rbp)

B:
movq -24(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -8(%rbp)

D:

How might you implement the following C code in assembly?

x = y >> 3 | x * 8

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…

Solutions (other instruction sequences can work too!)

• z = x ^ y

movq -8(%rbp), %rax

movq -16(%rbp), %rdx

xor %rdx, %rax

movq %rax, -24(%rbp)

• x = y >> 3 | x * 8

mov -8(%rbp), %rax

imul $8, %rax

movq -16(%rbp), %rdx

sar $3, %rdx

or %rax, %rdx

movq %rdx, -8(%rbp)

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Reading Quiz
	Slide 9: What we will learn this week

	Computer Architecture
	Slide 10: Von Neumann Model
	Slide 11: Our Goal: Build a CPU (model)
	Slide 12: Abstraction!
	Slide 13: XOR Circuit: Abstraction
	Slide 14: XOR Circuit: Abstraction!

	Build a CPU
	Slide 15: Recall Goal: Build a CPU (model)
	Slide 16: Recall Goal: Build a CPU (model)
	Slide 17: Which of these circuits is a one-bit adder?
	Slide 18: Which of these circuits is a one-bit adder?
	Slide 19: More than one bit?
	Slide 20: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 21: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 22: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 23: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 24: One-bit (full) adder
	Slide 25: Multi-bit Adder (Ripple-carry Adder)
	Slide 26: Three-bit Adder (Ripple-carry Adder)
	Slide 27: Arithmetic Logic Unit (ALU)
	Slide 28: Simple 3-bit ALU: Add and bitwise OR
	Slide 29: Simple 3-bit ALU: Add and bitwise OR
	Slide 30: Simple 3-bit ALU: Add and bitwise OR
	Slide 31: Which of these circuits lets us select between two inputs?
	Slide 32: Which of these circuits lets us select between two inputs?

	Advanced Circuits
	Slide 33: Multiplexor: Chooses an input value
	Slide 34: N-Way Multiplexor
	Slide 35: Example 1-bit, 4-way MUX
	Slide 36: Simple 3-bit ALU: Add and bitwise OR
	Slide 37: ALU: Arithmetic Logic Unit
	Slide 38: Goal: Build a CPU (model)
	Slide 39: Goal: Build a CPU (model)
	Slide 40: CPU so far…

	Memory Circuits
	Slide 41: Memory Circuit Goals: Starting Small
	Slide 42: R-S Latch: Stores Value Q
	Slide 43: R-S Latch: Stores Value Q
	Slide 44: Gated D Latch
	Slide 45: An N-bit Register
	Slide 46: “Register file”
	Slide 47: Memory Circuit Summary
	Slide 48: CPU so far…
	Slide 49: Recall: Von Neumann Model
	Slide 50: Digital Circuits - Building a CPU
	Slide 51: Digital Circuits - Building a CPU
	Slide 52: Control Unit
	Slide 53: CPU Game Plan
	Slide 54: Program State
	Slide 55: Fetching instructions.
	Slide 56: Decoding instructions.
	Slide 57: Decoding instructions.
	Slide 58: Decoding instructions.
	Slide 59: Executing instructions.
	Slide 60: Storing results.
	Slide 61: Why do we need a program counter? Can’t we just start at 0 and count up one at a time from there?
	Slide 62: Why do we need a program counter? Can’t we just start at 0 and count up one at a time from there?
	Slide 63: Storing results.
	Slide 64: Clocking
	Slide 65: Clock Driven System
	Slide 66: Cycle Time: Laundry Analogy
	Slide 67: Laundry
	Slide 68
	Slide 69: Pipelining (Laundry)
	Slide 70: Pipelining (CPU)
	Slide 71: Pipelining

	ISA
	Slide 72: Today
	Slide 73: Abstraction
	Slide 74: Abstraction
	Slide 75: Hardware: Control, Storage, ALU circuitry
	Slide 76: How a computer runs a program:
	Slide 77: Compilation Steps (.c to a.out)
	Slide 78: Compilation Steps (.c to a.out)
	Slide 79: Compilation Steps (.c to a.out)
	Slide 80: Machine Code
	Slide 81: Assembly Code
	Slide 82: What is “assembly”?
	Slide 83: Object / Executable / Machine Code
	Slide 84: Object / Executable / Machine Code
	Slide 85: Compilation Steps (.c to a.out)

	ISA Instructions
	Slide 86: Instruction Set Architecture (ISA)
	Slide 87: Instruction Set Architecture (ISA)
	Slide 88: Instruction Set Architecture (ISA)
	Slide 89: ISA Examples
	Slide 90: Intel x86 Family
	Slide 91: Instruction Set Architecture (ISA)
	Slide 92: Processor State in Registers
	Slide 93: Component Registers
	Slide 94: Assembly Programmer’s View of State
	Slide 95: Types of assembly instructions
	Slide 96: Data Movement
	Slide 97: Types of assembly instructions
	Slide 98: Arithmetic
	Slide 99: Types of assembly instructions
	Slide 100: Control
	Slide 101: Types of assembly instructions

	Addressing Modes
	Slide 102: Addressing Modes
	Slide 103: Addressing Modes
	Slide 104: Addressing Mode: Memory
	Slide 105: Addressing Mode: Memory
	Slide 106: Addressing Mode: Register
	Slide 107: Addressing Mode: Immediate
	Slide 108: Addressing Mode: Memory
	Slide 109: Addressing Mode: Displacement
	Slide 110: Addressing Mode: Displacement
	Slide 111: Addressing Mode: Displacement
	Slide 112: Let’s try a few examples...
	Slide 113: What will the state of registers and memory look like after executing these instructions?
	Slide 114: What will the state of registers and memory look like after executing these instructions?
	Slide 115: Solution
	Slide 116: Assembly Visualization Tool
	Slide 117: Solution
	Slide 118: What will the state of registers and memory look like after executing these instructions?
	Slide 119: How might you implement the following C code in assembly? z = x ^ y
	Slide 120: How might you implement the following C code in assembly? x = y >> 3 | x * 8
	Slide 121: Solutions (other instruction sequences can work too!)

