
CS 31: Introduction to Computer Systems

06: Computer Architecture
02-06-2025

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

What we will learn this week

1. Introduction to C
• Data organization and strings
• Functions

2. Computer Architecture
• Machine memory models
• Digital signals
• Logic gates

Functions: Specifying Types

Need to specify the return type of the function, and the type of each parameter:

<return type> <func name> (<param list>) {

 // declare local variables first

 // then function statements

 return <expression>;

}

// my_function takes 2 int values and returns an int

int my_function(int x, int y) {

 int result;

 result = x;

 if(y > x) {

 result = y+5;

 }

 return result*2;

}

Compiler will yell at you if you
try to pass the wrong type!

Passing Arrays

• An array argument’s value is its base address

int main(void){
 int values[10];
 foo(values, 10);
}
void foo(int arr[], int n){
 arr[2] = 6;
}

array base address

Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Function Arguments

Stack

main:
x:

y:

4

7

4

7

It doesn’t matter what func
does with a and b. The value
of x in main doesn’t change.

Passing Arrays

• An array argument’s value is its base address

int main(void){
 int values[10];
 foo(values, 10);
}
void foo(int arr[], int n){
 arr[2] = 6;
}

array base address

Stack

main:

foo:

10

arr

n

addr of values

0 1 2 … 9

values 6

Function Arguments

• Arguments can be pointers!

– The function gets the address of the passed variable!

void func(int *a) {

 *a = *a + 5;

}

int main(void) {

 int x = 4;

 func(&x);

 printf(“%d”, x);

}

Stack

main:

Function Arguments: passed by value

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

It doesn’t matter what func
does with a and b. The value
of x in main doesn’t change.

• Arguments are passed by memory address
– The function gets the address of the passed variable

int func(?, ?)
{
 //computations adding 4 to x

 return //x-y ;
}

int main(void) {

 int x, y, z;
 x = 4;
 y = 7;
 z = func(&x, &y);

 printf(“%d, %d”, x, y);
}

Function Arguments: passed by memory address

Stack

main: x:

y:

4

7

z:

what data type are a and b?
they can’t be integers. Recall
we have passed in a memory
address in the function call.

• Arguments are passed by memory address
– The function gets the address of the passed variable

int func(<memory addresss of int> a, <memory addresss of int> b) {
 //computations adding 4 to x

 return //x-y ;
}

int main(void) {
 int x, y, z; // declare three integers
 x = 4;
 y = 7;
 z = func(&x, &y);
 printf(“%d, %d”, x, y);
}

Function Arguments: passed by memory address

Stack

main: x:

y:

4

7

what data type are a and b?
they can’t be an integers.
they are type memory
addresses of an int

z:

Addr: 0xEF

Addr: 0xF7

Addr: 0xFF

• Arguments are passed by memory address
– The function gets the address of the passed variable

int func(<memory address of int> a, <memory address of int> b) {
 //computations adding 4 to x

 return //x-y ;
}

int main(void) {
 int x, y, z; // declare three integers
 x = 4;
 y = 7;
 z = func(&x, &y);
 printf(“%d, %d”, x, y);
}

Function Arguments: passed by memory address

Stack

main: x:

y:

?

4

7

z:

Addr: 0xEF

Addr: 0xF7

Addr: 0xFF

a:

b:

?

7

• Arguments are passed by memory address
– The function gets the address of the passed variable

int func(<memory address of int> a, <memory address of int> b) {
 //computations adding 4 to x

 return //x-y ;
}

int main(void) {
 int x, y, z; // declare three integers
 x = 4;
 y = 7;
 z = func(&x, &y);
 printf(“%d, %d”, x, y);
}

Function Arguments: passed by memory address

Stack

main: x:

y:

0xF7

4

7

z:

Addr: 0xEF

Addr: 0xF7

Addr: 0xFF

a:

b:

0xEF

7

In func, we want to add 4 to
x. How do we do that?

• Arguments are passed by memory address
– The function gets the address of the passed variable

int func(<memory address of int> a, <memory address of int> b) {
 //computations adding 4 to x

 return //x-y ;
}

int main(void) {
 int x, y, z; // declare three integers
 x = 4;
 y = 7;
 z = func(&x, &y);
 printf(“%d, %d”, x, y);
}

Function Arguments: passed by memory address

Stack

main: x:

y:

0xF7

4

7

z:

Addr: 0xEF

Addr: 0xF7

Addr: 0xFF

a:

b:

0xEF

7

We need the value at the
memory address of a.

• Arguments are passed by memory address
– The function gets the address of the passed variable

int func(<memory address of int> a, <memory address of int> b) {

 <value at addr a> += 5;

 return <value at addr a> - <value ad addr b>

}

int main(void) {

 int x, y, z; // declare three integers

 x = 4;

 y = 7;

 z = func(&x, &y);

 printf(“%d, %d”, x, y);

}

Function Arguments: passed by memory address

Stack

main: x:

y:

0xF7

4

7

z:

Addr: 0xEF

Addr: 0xF7

Addr: 0xFF

a:

b:

0xEF

7

We need the value at the memory
address of a and the value at the
memory address of b

Hardware Models (1940’s)

• Harvard Architecture:

• Von Neumann Architecture:

Program
Memory

Input/Output

Data
Memory

CPU
(Control and
Arithmetic)

CPU
(Control and
Arithmetic)

Program
and
Data

Memory

Input/Output

Von Neumann Architecture 1945

Computer is a generic computing machine
• Can be used to compute anything that is computable

• Based on Alan Turing’s Universal Turing Machine

Uses a stored program model
• both program & data loaded into computer memory

• No distinction between data & instructions in memory
• Earlier computers used fixed program encoded on machine, data loaded and run by fixed

program

All modern computers based on the Von Neumann model

Von Neumann Model
5 units connected by buses (wires) to communicate

Processing & Control Units:

• implement CPU \execute program instructions on program data

Memory: stores program instructions and data

• memory is addressable: addr 0, 1, 2, ...

Input, Output: interface to compute

• trigger actions: load program, initiate execution, ...

• display/store results: to terminal, save to disk, ...

Our Goal: Build a CPU (model)

Start with very simple functionality, and add complexity

CPU

ALU, Storage, Control

Complex Circuits

Simple Circuits

Basic Logic Gates

Build up complex
Functionality

Starting with simple
Functionality

Logic Gates

Input: Boolean value(s) (high and low voltages for 1 and 0)

Output: Boolean value result of Boolean function
 Always present, but may change when input changes

out = a & b out = a | b out = ~a

A B A & B A | B ~A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

a

b
out

AND OR

a

b
out

NOT

a out

More Logic Gates

A B A NAND B A NOR B

0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 0

Note the circle on the output.
This circle means bitwise “not”
(flip bits).

NOR

a

b
out

a

b
out

NAND

Combinational Logic Circuits

• Build up higher level processor functionality from basic gates

• Outputs are boolean functions of inputs

• Outputs continuously respond to changes to inputs

Acyclic Network of Gates

Inputs Outputs

What does this circuit output?

X

Y

Output

X Y OutA OutB OutC OutD OutE

0 0 0 1 0 1 0

0 1 0 1 0 0 1

1 0 1 0 1 1 1

1 1 0 0 1 1 0

Clicker Choices

a

b
out

AND

OR

a

b
out

NOT

a out

What does this circuit output?

X

Y

Output

X Y OutA OutB OutC OutD OutE

0 0 0 1 0 1 0

0 1 0 1 0 0 1

1 0 1 0 1 1 1

1 1 0 0 1 1 0

Clicker Choices

a

b
out

AND

OR

a

b
out

NOT

a out

Building more interesting circuits…

• Build-up XOR from basic gates (AND, OR, NOT)

• Q: When is A^B ==1?

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

Building more interesting circuits…

• Build-up XOR from basic gates (AND, OR, NOT)

• Q: When is A^B ==1?

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

Which of these is an XOR circuit?

General strategy:

1. Determine truth table (given inputs)

2. Find rows with output = 1
– express these in terms of input values A, B combined

with AND, NOT

– then, combine each row expression with OR

3. Translate expression to a circuit

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

a

b
out

AND OR

a

b
out

NOT

a out

Which of these is an XOR circuit?

Draw an XOR circuit using AND, OR, and
NOT gates.

I’ll show you the clicker options after
you’ve had some time.

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

a

b
out

AND OR

a

b
out

NOT

a out

Which of these is an XOR circuit?

a

b
out

AND OR

a

b
out

NOT

a out

Use A^B == (~A & B) | (A & ~B)

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

General strategy:

1. Determine truth table (given inputs)

2. Find rows with output = 1
– express these in terms of input values A, B combined

with AND, NOT

– then, combine each row expression with OR

3. Translate expression to a circuit

Which of these is an XOR circuit?

A

B

A

B

A

B

A

B

E: None of these are XOR.

A: B:

C: D:

Use A^B == (~A & B) | (A & ~B)

Which of these is an XOR circuit?

A

B

A

B

A

B

A

B

E: None of these are XOR.

A: B:

C: D:

Use A^B == (~A & B) | (A & ~B)

XOR Circuit: Abstraction

A^B == (~A & B) | (A & ~B)

A

B
out = A^B

A:0 B:0 A^B:

A:0 B:1 A^B:

A:1 B:0 A^B:

A:1 B:1 A^B:

=

XOR Circuit: Abstraction!

A^B == (~A & B) | (A & ~B)

out = A^B

A

B

XOR out = A^BA

B

Treat XOR Circuit as a
 building block for other
circuits!

Abstraction!

• Hide away the complex internals of how the system functions, and focus
on what functionality we expect. I.e., the guaranteed output of a system
given the set of allowed inputs, and treating the functionality of the
system as a black box.

• What are examples of abstractions you have experienced in daily life?

Recall Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality

– Example: adder circuit to add two values together

2. Storage: to store binary values

– Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution

– Example: circuitry to fetch the next instruction from memory and decode it

Recall Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality

– Example: adder circuit to add two values together

Start with ALU components (e.g., adder circuit, bitwise operator circuits)

Combine component circuits into ALU!

Digital Circuits - Building a CPU

Start with building an ALU:
1. Individual components from basic logic gates

 Adder, Subtractor, Bit shifter, Bit-wise OR, ...

2. Combine them together into ALU!

ALU

Full Adder, Shifter, …

1-bit circuits

Basic Logic Gates

Arithmetic Circuits

• 1 bit adder: A+B

• Two outputs:

1. Obvious one: the sum

2. Other one: ??

A B Sum (A + B) Cout

0 0

0 1

1 0

1 1

Arithmetic Circuits

• 1 bit adder: A+B

• Two outputs:

1. Obvious one: the sum

2. Other one: ??

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Which of these circuits is a one-bit adder?

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Which of these circuits is a one-bit adder?

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

More than one bit addition?

• When adding, sometimes have carry in too

 0011010

 + 0001111

More than one bit?

• When adding, sometimes have carry in too

 1111

 0011010

 + 0001111

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?

When is Cout 1?

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?
~Cin & (A^B) | Cin & ~(A^B) == (Cin ^ (A^B))

When is Cout 1?

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?
~Cin & (A^B) | Cin & ~(A^B) == (Cin ^ (A^B))

When is Cout 1?

(A & B) | ((A^B) & Cin)

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Write Boolean expressions for

Sum = 1 and Cout = 1

When is Sum 1?
~Cin & (A^B) | Cin & ~(A^B) == (Cin ^ (A^B))

When is Cout 1?

(A & B) | ((A^B) & Cin)

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

1-bit
adder

Cin

Cout

A

B Sum

One-bit (full) adder

• Need to include:

 carry-in and carry-out

= 1-bit
adder

Cin

Cout

A

B Sum

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Multi-bit Adder (Ripple-carry Adder)

1-bit
adder

0

Cout

A0

B0 Sum0

1-bit
adder

Cout

A1

B1 Sum1

1-bit
adder

Cout

A3

B3 Sum3

1-bit
adder

Cout

A2

B2 Sum2

…

1-bit
adder

Cout

AN-1

BN-1 SumN-1

Three-bit Adder (Ripple-carry Adder)

1-bit
adder

0

0

1

1-bit
adder

1

1

1-bit
adder

0

0

010
+ 011 = 3-bit

adder

A0

A1

A2

B0

B1

B2

Carry out

Carry in

Sum0

Sum1

Sum2

Arithmetic Logic Unit (ALU)

• One component that knows how to manipulate bits in multiple ways

– Addition

– Subtraction

– Multiplication / Division

– Bitwise AND, OR, NOT, etc.

• Built by combining components

– Take advantage of sharing HW when possible
(e.g., subtraction using adder)

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Out0

Out1

Out2

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit
inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Out0

Out1

Out2

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit
inputs
A and B:

Or0

Or2

Or1

Out0

Out1

Out2

Extra input: control signal to select Sum vs. OR

Circuit that takes
in Sum0-2 / Or0-2

and only outputs
one of them,

based on control
signal.

Which of these circuits lets us select between two inputs?

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

A: B:

C:

Which of these circuits lets us select between two inputs?

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

A: B:

C:

Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

• Control signal c, chooses the input for output

• When c is 1: choose a, when c is 0: choose b

out
b

c

a out = (c & a)|(~c &b)

1 bit 2-way MUX

N-Way Multiplexor

Choose one of N inputs, need log2 N select bits

D0

D3

Out

c0

c1

MUX4

D2

D1

4-Way Multiplexor

C Input to
 choose D0

D0

c1
c0

.

c1 c2 Output

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Example 1-bit, 4-way MUX

• When select input is 2 (0b10): C chosen as output

Out

A

s0

B

1 bit 4-way MUXs1

D

C

s

Out

1 bit
4-way
MUX

A
B
C
D

S Out

0 A

1 B

2 C

3 D
C

0

1

11 C

0

0

0

=

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1

A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Multiplexor!

ALU: Arithmetic Logic Unit

• Arithmetic and logic circuits: ADD, SUB, NOT, …
• Control circuits: use op bits to select output
• Circuits around ALU:

– Select input values X and Y from instruction or register
– Select op bits from instruction to feed into ALU
– Feed output somewhere

OF

A
L
U

Y

X op Y

op bits: selects which op to output

Output flags: set as a
side effect of op
(e.g., overflow detected)

ADD 2 3

X

CPU
Instruction:

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality

– Example: adder circuit to add two values together

2. Storage: to store binary values

– Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution

– Example: circuitry to fetch the next instruction from memory and decode it

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

2. Storage: to store binary values

– Example: set of CPU registers (“register file”) to store temporary values

Give the CPU a “scratch space” to perform calculations and keep track of
the state its in.

CPU so far…

• We can perform arithmetic!

• Storage questions:

– Where to the ALU input values come from?

– Where do we store the result?

– What does this “register” thing mean?

A
L
U

?

?

?

Memory Circuit Goals: Starting Small

• Store a 0 or 1

• Retrieve the 0 or 1 value on demand (read)

• Set the 0 or 1 value on demand (write)

R-S Latch: Stores Value Q

When R and S are both 1: Maintain a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

Q (value stored)

~Q

S

R

R-S Latch

a

b

Gated D Latch

Controls S-R latch writing, ensures S & R never both 0

Q (value stored)

~Q

S

R

R-S Latch
D

WE

D: into top NAND, ~D into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Latches used in registers (up next) and SRAM (caches, later)
 Fast, not very dense, expensive

DRAM: capacitor-based:

An N-bit Register

• Fixed-size storage (8-bit, 32-bit, 64-bit, etc.)

• Gated D latch lets us store one bit

– Connect N of them to the same write-enable wire!

Write-enable:

N-bit input
wires (bus):

N-bit Register

…

Bit 0

Bit 1

Bit N-1

Data out64-bit Register=

“Register file”

• A set of registers for the CPU to store temporary values.

• This is (finally)
something you
will interact with!

• Instructions of form:

– “add R1 + R2, store result in R3”

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Memory Circuit Summary

• Lots of abstraction going on here!

– Gates hide the details of transistors.

– Build R-S Latches out of gates to store one bit.

– Combining multiple latches gives us N-bit register.

– Grouping N-bit registers gives us register file.

• Register file’s simple interface:

– Read Rx’s value, use for calculation

– Write Ry’s value to store result

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Reading Quiz
	Slide 9: What we will learn this week

	Functions
	Slide 10: Functions: Specifying Types
	Slide 11: Passing Arrays
	Slide 12: Function Arguments
	Slide 13: Function Arguments
	Slide 14: Passing Arrays
	Slide 15: Function Arguments
	Slide 16: Function Arguments: passed by value
	Slide 17: Function Arguments: passed by memory address
	Slide 18: Function Arguments: passed by memory address
	Slide 19: Function Arguments: passed by memory address
	Slide 20: Function Arguments: passed by memory address
	Slide 21: Function Arguments: passed by memory address
	Slide 22: Function Arguments: passed by memory address

	Computer Architecture
	Slide 23: Hardware Models (1940’s)
	Slide 24: Von Neumann Architecture 1945
	Slide 25: Von Neumann Model
	Slide 26: Our Goal: Build a CPU (model)
	Slide 27: Logic Gates
	Slide 28: More Logic Gates
	Slide 29: Combinational Logic Circuits
	Slide 30: What does this circuit output?
	Slide 31: What does this circuit output?
	Slide 32: Building more interesting circuits…
	Slide 33: Building more interesting circuits…
	Slide 34: Which of these is an XOR circuit?
	Slide 35: Which of these is an XOR circuit?
	Slide 36: Which of these is an XOR circuit?
	Slide 37: Which of these is an XOR circuit?
	Slide 38: Which of these is an XOR circuit?
	Slide 39: XOR Circuit: Abstraction
	Slide 40: XOR Circuit: Abstraction!
	Slide 41: Abstraction!

	Build a CPU
	Slide 42: Recall Goal: Build a CPU (model)
	Slide 43: Recall Goal: Build a CPU (model)
	Slide 44: Digital Circuits - Building a CPU
	Slide 45: Arithmetic Circuits
	Slide 46: Arithmetic Circuits
	Slide 47: Which of these circuits is a one-bit adder?
	Slide 48: Which of these circuits is a one-bit adder?
	Slide 49: More than one bit addition?
	Slide 50: More than one bit?
	Slide 51: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 52: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 53: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 54: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 55: One-bit (full) adder
	Slide 56: Multi-bit Adder (Ripple-carry Adder)
	Slide 57: Three-bit Adder (Ripple-carry Adder)
	Slide 58: Arithmetic Logic Unit (ALU)
	Slide 59: Simple 3-bit ALU: Add and bitwise OR
	Slide 60: Simple 3-bit ALU: Add and bitwise OR
	Slide 61: Simple 3-bit ALU: Add and bitwise OR
	Slide 62: Which of these circuits lets us select between two inputs?
	Slide 63: Which of these circuits lets us select between two inputs?

	Advanced Circuits
	Slide 64: Multiplexor: Chooses an input value
	Slide 65: N-Way Multiplexor
	Slide 66: Example 1-bit, 4-way MUX
	Slide 67: Simple 3-bit ALU: Add and bitwise OR
	Slide 68: ALU: Arithmetic Logic Unit
	Slide 69: Goal: Build a CPU (model)
	Slide 70: Goal: Build a CPU (model)
	Slide 71: CPU so far…

	Memory Circuits
	Slide 72: Memory Circuit Goals: Starting Small
	Slide 73: R-S Latch: Stores Value Q
	Slide 74: Gated D Latch
	Slide 75: An N-bit Register
	Slide 76: “Register file”
	Slide 77: Memory Circuit Summary

