
CS 31: Introduction to Computer Systems

05: C Functions & Computer Architecture
02-04-2025

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

What we will learn this week

1. Introduction to C
• Data organization and strings
• Functions

2. Computer Architecture
• Machine memory models
• Digital signals
• Logic gates

Data Collections in C

• Many complex data types out there (CS 35)

• C has a few simple ones built-in:

– Arrays

– Structures (struct)

– Strings (arrays of characters)

• Often combined in practice, e.g.:

– An array of structs

– A struct containing strings

Arrays and Strings

• C’s support for collections of values

– Array buckets store a single type of value

– There is no “string” data type 

– Specify max capacity (num buckets) when you declare an

array variable (single memory chunk)

 <type> <var_name>[<num buckets>];

 int arr[5]; // an array of 5 integers

 float rates[40]; // an array of 40 floats

• C’s support for collections of values

• Often accessed via a loop:

int arr[5]; // an array of 5 integers

float rates[40]; // an array of 40 floats

for (i=0; i < 5; i++) {

 arr[i] = i;

 rates[i] = arr[i]*2;

}

Get/Set value using brackets [] to index into array.

arr

[0] [1] [2] [3] [4]

Arrays

What does this for loop print?

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?

• Array variable name means, to the compiler, the beginning of the
memory chunk. (The memory address)

– january_temps” (without brackets!) Location of [0] in memory.

– Keep this in mind, we’ll return to it soon (functions).

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?

• The index refers to an offset from the start of the array

– e.g., january_temps[3] means “three integers forward from the

starting address of january_temps”

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Array Characteristics

int january_temps[31]; // Daily high temps

• Asking for january_temps[35]?

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

C does NOT do bounds checking.

• Python: error

• C: “Sure! I don’t care ..” <ominous silence while bad things

happen>

Characters and Strings

A character (type char) is numerical value that holds one letter.
 char my_letter = ‘w’; // Note: single quotes

What is the numerical value?
– printf(“%d %c”, my_letter, my_letter);

– Would print: 119 w

Why is ‘w’ equal to 119?
– ASCII Standard says so.

– American Standard Code for Information Interchange

Characters

and Strings

$ man ascii

119 = w

Characters and Strings

• A character (type char) is numerical value that holds one letter.

• A string is a memory block containing characters, one after another…,
with a
null terminator (numerical 0) at the end.

• Examples:

 char food[6] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]
food (Other memory)

Hmm, suppose we used printf and %s to print
name.

How does it know where the string ends and
other memory begins?

Characters and Strings

• A character (type char) is numerical value that holds one letter.

• A string is a memory block containing characters, one after another,
with a null terminator (numerical 0) at the end.

• Examples:

 char food[20] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

\0

[5]

…

[6] [7] [18][19]
food

Special stuff
over here in
the lower
values.

0 is the
“Null character”

Characters and

Strings

$ man ascii

Strings in C

• C String library functions: #include <string.h>

– Common functions (strlen, strcpy,etc.) make strings easier

– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:

– Allocate enough space for null terminator!

– If you’re modifying a character array (string), don’t forget to set the null

terminator!

– If you see crazy, unpredictable behavior with strings, check these two things!

Functions and Stack Diagrams

Functions: Specifying Types

Need to specify the return type of the function, and the type of each parameter:

<return type> <func name> (<param list>) {

 // declare local variables first

 // then function statements

 return <expression>;

}

// my_function takes 2 int values and returns an int

int my_function(int x, int y) {

 int result;

 result = x;

 if(y > x) {

 result = y+5;

 }

 return result*2;

}

Compiler will yell at you if you
try to pass the wrong type!

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

func:
a:

b:

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

func:
a:

b:

4

7

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

func:
a:

b:

9

7

Note: This doesn’t change!

No impact on values in main!

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

2

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

2

Output: 4, 2

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;//DRAW STACK DIAGRAM AT THIS POINT

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: What does the name of an
array mean to the compiler?

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: Still accessing the same
memory location of array in func

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

105

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

105

0a:

my_array:
(Mem address)

0y:
func:

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

105

0a:

my_array:
(Mem address)

1y:
func:

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

80

func:
0a:

my_array:
(Mem address)

1y:

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

80

• You are not expected to master C.

• It’s a skill you’ll pick up as you go.

• We’ll revisit these topics when necessary.

• When in doubt: solve the problem in English, whiteboard pictures,
whatever else!

– Translate to C later.

– Eventually, you’ll start to think in C.

What is a computer system?

Hardware (HW) & Special Systems Software (OS) that work together to
run application programs

• HW executes program instructions

• OS that manages the computer HW

• OS also provides abstractions to the programs/users

Computer Hardware

Operating System
CPU | Memory | Storage

P1 P2 P3

P1
P2

P3

Program

// example C program
void main() {
 int authenticate;
 scanf(“Enter your
 username and pwd:”);
}

C program:

How a Computer Runs a Program

What we know so far:

– Much of C programming language
• types, operators, arrays, parameter passing, strings

– Binary encodings & sizes for different C types
• char: signed (2’s complement), 1 byte value

• unsigned int: unsigned, 4 byte value

– How to perform binary operations (Add, Sub, Bit-wise)

How instructions & data are encoded

OS Abstractions, Resource management

How underlying HW organized & works

C Program How C program is run on System:

How underlying HW organized & works

Binary Program

Operating System

Computer Hardware

Hardware Models (1940’s)

• Harvard Architecture:

• Von Neumann Architecture:

Program
Memory

Input/Output

Data
Memory

CPU
(Control and
Arithmetic)

CPU
(Control and
Arithmetic)

Program
and
Data

Memory

Input/Output

Von Neumann Architecture 1945

Computer is a generic computing machine
• Can be used to compute anything that is computable

• Based on Alan Turing’s Universal Turing Machine

Uses a stored program model
• both program & data loaded into computer memory

• No distinction between data & instructions in memory
• Earlier computers used fixed program encoded on machine, data loaded and run by fixed

program

All modern computers based on the Von Neumann model

Von Neumann Model
5 units connected by buses (wires) to communicate

Processing & Control Units:

• implement CPU \execute program instructions on program data

Memory: stores program instructions and data

• memory is addressable: addr 0, 1, 2, ...

Input, Output: interface to compute

• trigger actions: load program, initiate execution, ...

• display/store results: to terminal, save to disk, ...

buses

Memory
Unit Input

 Units
Output
Units

Processing
Unit

Control
Unit

The CPU

Processing Unit: executes instructions selected by Control unit

• ALU (arithmetic logic unit): simple functional units: ADD, SUB…

• Registers: temporary storage directly accessible by instructions

Control unit: determines instruction executed next

• PC: program counter: memory address of next instruction

• IR: holds current instruction bits

cntrl bus
addr bus

data bus

Memory
Unit

Processing
Unit

ALU registers

Control
Unit

PC IR

Regs

on-chip
storage:
fastest
to access

CPU: Processing and Control Units

1. Fetch instruction from Memory (its addr in PC) into IR
 (and increment address in PC to next instruction address)

1. Fetch instruction from Memory (its addr in PC) into IR
 (and increment address in PC to next instruction address)

2. Decode instruction bits to determine operation & operands

3. Execute instruction on ALU

3. Execute instruction on ALU

4. Store instruction results to Memory

Digital Computers

• All input & output are discrete and binary
• data, instructions, control signals (0: no voltage, 1: voltage)

• execution is driven by a clock (will discuss later)

• time is discrete: time 1, time 2, time 3, ...

• To run program, need different types of circuits

CPU
ALU, Cntrl,

Storage

RAM
Cntrl & Storage

bus

Circuits to
store program
data and instructions
and support reading
and writing
addressable storage
locations

Circuits to
execute
program
instructions
that act on
program data

Our Goal: Build a CPU (model)

Start with very simple functionality, and add complexity

CPU

ALU, Storage, Control

Complex Circuits

Simple Circuits

Basic Logic Gates

Build up complex
Functionality

Starting with simple
Functionality

Logic Gates

Input: Boolean value(s) (high and low voltages for 1 and 0)

Output: Boolean value result of Boolean function
 Always present, but may change when input changes

out = a & b out = a | b out = ~a

A B A & B A | B ~A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

a

b
out

AND OR

a

b
out

NOT

a out

More Logic Gates

A B A NAND B A NOR B

0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 0

Note the circle on the output.
This circle means bitwise “not”
(flip bits).

NOR

a

b
out

a

b
out

NAND

Combinational Logic Circuits

• Build up higher level processor functionality from basic gates

• Outputs are boolean functions of inputs

• Outputs continuously respond to changes to inputs

Acyclic Network of Gates

Inputs Outputs

Combinatorial Logic Circuits

• Combine logic circuits together to implement
higher-level functionality

• Use this new functionality as a building block for
even higher level functionality (Abstraction!)

Acyclic Network of Gates

Inputs Outputs

Outputs are boolean functions of inputs

Outputs continuously respond to changes to inputs

What does this circuit output?

X

Y

Output

X Y OutA OutB OutC OutD OutE

0 0 0 1 0 1 0

0 1 0 1 0 0 1

1 0 1 0 1 1 1

1 1 0 0 1 1 0

Clicker Choices

a

b
out

AND

OR

a

b
out

NOT

a out

What does this circuit output?

X

Y

Output

X Y OutA OutB OutC OutD OutE

0 0 0 1 0 1 0

0 1 0 1 0 0 1

1 0 1 0 1 1 1

1 1 0 0 1 1 0

Clicker Choices

a

b
out

AND

OR

a

b
out

NOT

a out

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Reading Quiz
	Slide 9: What we will learn this week
	Slide 10: Data Collections in C
	Slide 11: Arrays and Strings
	Slide 12
	Slide 13: Array Characteristics
	Slide 14: Array Characteristics
	Slide 15: Array Characteristics
	Slide 16: Characters and Strings
	Slide 17: Characters and Strings $ man ascii
	Slide 18: Characters and Strings
	Slide 19: Characters and Strings
	Slide 20
	Slide 21: Strings in C

	Functions
	Slide 22: Functions and Stack Diagrams
	Slide 23: Functions: Specifying Types
	Slide 24: Function Arguments
	Slide 25: Function Arguments
	Slide 26: Function Arguments
	Slide 27: Function Arguments
	Slide 28: Function Arguments
	Slide 29: Function Arguments
	Slide 30: Function Arguments
	Slide 31: What will this print?
	Slide 32: What will this print?
	Slide 33: What will this print?
	Slide 34: What will this print?
	Slide 35: What will this print?
	Slide 36: What will this print?
	Slide 37: What will this print?
	Slide 38

	Computer Architecture
	Slide 39: What is a computer system?
	Slide 40: How a Computer Runs a Program
	Slide 41: Hardware Models (1940’s)
	Slide 42: Von Neumann Architecture 1945
	Slide 43: Von Neumann Model
	Slide 44: CPU: Processing and Control Units
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Digital Computers
	Slide 50: Our Goal: Build a CPU (model)
	Slide 51: Logic Gates
	Slide 52: More Logic Gates
	Slide 53: Combinational Logic Circuits
	Slide 54: Combinatorial Logic Circuits
	Slide 55: What does this circuit output?
	Slide 56: What does this circuit output?

