
CS 31: Introduction to Computer Systems

04: Introduction to C
01-30-2025

Announcements

• Register your clicker! https://forms.gle/YBFvNWPTXgiySMHx5

• Reading quizzes count from this week!

• HW 1 is out! – New Due Date is Monday Feb 3rd

• Please let me know if you don’t have a homework group!

• Please give me your accommodation forms this week

• Sophomore planning information session Feb 5th, Wed, 12-1pm, in
Sci 204.

https://forms.gle/YBFvNWPTXgiySMHx5

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

The First “Computers”: Women

ENIAC was

developed 10

mi from here,

at UPenn

How did we get to C?

Dennis Ritchie

worked at Bell Labs
C Unix
C was created for systems programming

back in 1972.

C was created to write Unix.

Machine /

Hardware

first transistor, solar cell, compilers,

C, C++, Unix, deep learning, + more!

Why C in this course?

Did you ever see the wizard of Oz?

What was going on behind the curtains?

More than what you would think!

The mystery revealed!

What the…

Python versus C: Paradigms

Python and C follow different programming paradigms.

• C:
• is procedure-oriented.

• breaks down to functions.

• Python:
• follows an object-oriented paradigm.

• allows Python to break down objects and methods.

Python versus C: Paradigms
https://devrant.com/rants/1755638/c-vs-python

So, the point(er) is….?
• Programming languages are tools

• Python is one language and it does its job well

• C is another language and it does its job well

• Pick the right tool for the job

• C is a good language to explore how the system works under-the-hood.

• C is the Language of Systems Programmers: Fast running OS code that exposes the

details of the hardware is really important!

• It’s the right tool for the job we need to accomplish in this course!

So, the point(er) is….?

• Programming languages are tools. C is a good high-level language to

explore how the system works under-the-hood, revealing the relationship

between code and computer execution

• C is the language of systems programmers: Fast running OS code that exposes the

details of the hardware is really important!

• Greater control over how a program uses and accesses memory

• Can more easily parallelize programs in C

• It’s the right tool for the job we need to accomplish in this course!

Python versus C: Paradigms

Python and C follow different programming paradigms.

• C:

– is procedure-oriented.

– breaks down to functions.

• Python:

– follows an object-oriented paradigm.

– allows Python to break down objects and methods.

Hello World

Python C
hello world

import math

def main():

 print “hello world”

main()

// hello world

#include <stdio.h>

int main() {

 printf(“hello world\n”);

 return 0;

}

Hello World

Python C
hello world

import math

def main():

 print “hello world”

main()

// hello world

#include <stdio.h>

int main() {

 printf(“hello world\n”);

 return 0;

}

#: single line comment //: single line comment

Hello World

Python C
hello world

import math

def main():

 print “hello world”

main()

// hello world

#include <stdio.h>

int main() {

 printf(“hello world\n”);

 return 0;

}

#: single line comment //: single line comment

import libname: include Python libraries #include<libname>: include C libraries

Hello World

Python C
hello world

import math

def main():

 print “hello world”

main()

// hello world

#include <stdio.h>

int main() {

 printf(“hello world\n”);

 return 0;

}

#: single line comment //: single line comment

import libname: include Python libraries #include<libname>: include C libraries

Blocks: indentation Blocks: { } (indentation for readability)

“White Space”

• Python cares about how your program is formatted. Spacing has
meaning.

• C compiler does NOT care. Spacing is ignored.

– This includes spaces, tabs, new lines, etc.

– Good practice (for your own sanity):

• Put each statement on a separate line.

• Keep indentation consistent within blocks.

Are these the same program?

#include <stdio.h>

int main(void) {

 int number = 7;

 if (number > 10) {

 do_this();

 } else {

 do_that();

 }

}

#include <stdio.h>

int main(void) { int number =7; if
(number > 10) { do_this();

 } else

{

do_that();}}

A. Yes, but one is harder to read

B. No

C. I can’t tell…

Are these the same program?

#include <stdio.h>

int main(void) {

 int number = 7;

 if (number > 10) {

 do_this();

 } else {

 do_that();

 }

}

#include <stdio.h>

int main(void) { int number =7; if
(number > 10) { do_this();

 } else

{

do_that();}}

Yes – but one is harder to
debug than the other

Hello World

Python C
hello world

import math

def main():

 print “hello world”

main()

// hello world

#include <stdio.h>

int main(void) {

 printf(“hello world\n”);

 return 0;

}

#: single line comment //: single line comment

import libname: include Python libraries #include<libname>: include C libraries

Blocks: indentation Blocks: { } (indentation for readability)

print: statement to printout string printf: function to print out format string

statement: each on separate line statement: each ends with ;

def main(): : the main function definition int main(void) : the main function definition
 (int specifies the return type of main)

Types

• Everything is stored as bits.

• Type tells us how to interpret those bits.

• “What type of data is it?”

– integer, floating point, text, etc.

Type Matters!

• No self-identifying data

– Looking at a sequence of bits doesn’t tell you what they mean

– Could be signed, unsigned integer

– Could be floating-point number

– Could be part of a string

• The machine interprets what those bits mean!

Types in C

• All variables have an explicit type!

• You (programmer) must declare variable types.

– Where: at the beginning of a block, before use.

– How: <variable type> <variable name>;

• Examples:

int humidity; float temperature;

humidity = 20; temperature = 32.5;

We have to explicitly declare variable types ahead of time? Lame!

Python figured out variable types for us, why doesn’t C?

A. C is old.

B. Explicit type declaration is more efficient.

C. Explicit type declaration is less error prone.

D. Dynamic typing (what Python does) is imperfect.

E. Some other reason (explain)

We have to explicitly declare variable types ahead of time? Lame!

Python figured out variable types for us, why doesn’t C?

A. C is old.

B. Explicit type declaration is more efficient.

C. Explicit type declaration is less error prone.

D. Dynamic typing (what Python does) is imperfect.

E. Some other reason (explain)

Numerical Type Comparison

Integers (int)

• Example:

 int age;

age = 20;

• Only represents integers

• Small range, high precision

• Faster arithmetic

Floating Point (float, double)

• Example:

 float temperature;

 temperature = 32.5;

• Represents fractional values

• Large range, less precision

• Slower arithmetic

I need a variable to store a number, which type should I use?

Use the one that fits your specific need best…

An Example with Local Variables

/* a multiline comment:
 anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
 // first: declare main’s local variables
 int x, y;
 float z;

 // followed by: main function statements
 x = 6;
 y = (x + 3)/2;
 z = x;
 z = (z + 3)/2;

 printf(…) // Print x, y, z
}

Slide 39

/* a multiline comment:
 anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
 // first: declare main’s local variables
 int x, y;
 float z;

 // followed by: main function statements
 x = 6;
 y = (x + 3)/2;
 z = x;
 z = (z + 3)/2;

 printf(…) // What is the output here?
}

An Example with Local Variables

X Y Z

A 4 4 4

B 6 4 4

C 6 4.5 4

D 6 4 4.5

E 6 4.5 4.5

Clicker choices

/* a multiline comment:
 anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
 // first: declare main’s local variables
 int x, y;
 float z;

 // followed by: main function statements
 x = 6;
 y = (x + 3)/2; //x and y are both ints
 z = x; //z is a float, value of x is converted to a float
 z = (z + 3)/2;

 printf(…) // What is the output here?
}

An Example with Local Variables

X Y Z

A 4 4 4

B 6 4 4

C 6 4.5 4

D 6 4 4.5

E 6 4.5 4.5

Clicker choices

Operators: need to think about type

Arithmetic: +, -, *, /, % (numeric type operands)

/: operation and result type depends on operand types:

– Two int operands: int division truncates: 3/2 is 1

– 1 or 2 float or double: float or double division: 3.0/2 is 1.5

%: mod operator: (only int or unsigned types)

• Gives you the (integer) remainder of division: 13 % 2 is 1, 27 % 3 is 0

• Shorthand operators :

– var op = expr; (var = var op expr):

– x += 4 is equivalent to x = x + 4

– var++; var--; (var = var+1; var = var-1):

x++ is same as x = x + 1 x-- is same as x = x -1;

Boolean values in C?

• There is no “boolean” type in C!

• Instead, integer expressions used in conditional statements are interpreted
as true or false

• Zero (0) is false, any non-zero value is true

– Use this to always check return value of the function

• Questions?

• “Which non-zero value does it use?

• E.g., int x = 10>5. what is x? //arbitrary non-zero value

Slide 42

The value of x is compiler specific don’t rely on the output to be a certain value

Operators: consider the type

• Relational (operands any type, result int “boolean”):

• <, <=, >, >=, ==, !=

• 6 != (4+2) is 0 (false)

• 6 > 3 some non-zero value (we don’t care which one) (true)

• Logical (operands int “boolean”, result int “boolean”):

• ! (not): !6 is 0 (false)

• && (and): 8 && 0 is 0 (false)

• || (or): 8 || 0 is non-zero (true)

Boolean values in C

• Zero (0) is false, any non-zero value is true

• Logical (operands int “boolean”->result int “boolean”):

• ! (not): inverts truth value

• && (and): true if both operands are true

• || (or): true if either operand is true

Do the following statements
evaluate to True or False?

#1: (!10) || (5 > 2)

#2: (-1) && ((!5) > -1)

#1 #2

A True True

B True False

C False True

D False False

Clicker choices

Boolean values in C

• Zero (0) is false, any non-zero value is true

• Logical (operands int “boolean”->result int “boolean”):

• ! (not): inverts truth value

• && (and): true if both operands are true

• || (or): true if either operand is true

#1 #2

A True True

B True False

C False True

D False False

Clicker choicesDo the following statements
evaluate to True or False?

#1: (!10) || (5 > 2)

#2: (-1) && ((!5) > -1)

Conditional Statements

Very similar to Python, just remember { } are blocks:

 w/o curly braces, only the next line will be executed!

Always use curly braces.

Basic if statement: With optional else:

if(<boolean expr>) {

 if-true-body

}

if(<boolean expr>) {

 if-true-body

} else {

 else body(expr-false)

}

Conditional Statements

Very similar to Python, just remember { } are blocks

Chaining if-else if With optional else:

if(<boolean expr1>) {

 if-expr1-true-body

} else if (<bool expr2>){

 else-if-expr2-true-body

 (expr1 false)

}

...

} else if (<bool exprN>){

 else-if-exprN-true-body

}

if(<boolean expr1>) {

 if-expr1-true-body

} else if (<bool expr2>){

 else-if-expr2-true-body

}

...

} else if (<bool exprN>){

 else-if-exprN-true-body

} else {

 else body

 (all exprX’s false)

}

While Loops

Basically identical to Python while loops:

 while(<boolean expr>) {

 while-expr-true-body

 }

x = 20;

while (x < 100) {

 y = y + x;

 x += 4; // x = x + 4;

}

<next stmt after loop>;

x = 20;

while(1) {

 y = y + x;

 x += 4;

 if(x >= 100) {

 break; // break out of loop

 }

}

<next stmt after loop>;

Which one of these results
in an infinite loop?
A) while (x <100)
B) while(1)
C) Both A and B
D) Neither A or B

While Loops

Basically identical to Python while loops:

 while(<boolean expr>) {

 while-expr-true-body

 }

x = 20;

while (x < 100) {

 y = y + x;

 x += 4; // x = x + 4;

}

<next stmt after loop>;

x = 20;

while(1) {

 y = y + x;

 x += 4;

 if(x >= 100) {

 break; // break out of loop

 }

}

<next stmt after loop>;

Which one of these results
in an infinite loop?
A) while (x <100)
B) while(1)
C) Both A and B
D) Neither A or B

For loops: different than Python’s

for (<init>; <cond>; <step>) {

 for-loop-body-statements

}

<next stmt after loop>;

1. Evaluate <init> one time, when first eval for statement

2. Evaluate <cond>, if it is false, drop out of the loop (<next stmt after>)

3. Evaluate the statements in the for loop body

4. Evaluate <step>

5. Goto step (2)

for(i=1; i <= 10; i++) { // example for loop

 printf(“%d\n”, i*i);

}
What does this for loop print?

printf function

Python: print “%d %s\t %f” % (6, “hello”, 3.4)

C: printf(“%d %s\t %f\n”, 6, “hello”, 3.4);

 printf(<format string>, <values list>);

%d int placeholder (-13)

%f or %g float or double (higher-precision than float) placeholder (9.6)

%c char placeholder (‘a’)

%s string placeholder (“hello there”)

\t \n tab character, new line character

Formatting Differences:

C: need to explicitly print end-of-line character (\n)

C: string and char are different types

‘a’: in Python is a string, in C is a char

 “a”: in Python is a string, in C is a string

Data Collections in C

• Many complex data types out there (CS 35)

• C has a few simple ones built-in:

– Arrays

– Structures (struct)

– Strings (arrays of characters)

• Often combined in practice, e.g.:

– An array of structs

– A struct containing strings

Arrays

• C’s support for collections of values

– Array buckets store a single type of value

– Specify max capacity (num buckets) when you declare an

array variable (single memory chunk)

 <type> <var_name>[<num buckets>];

 int arr[5]; // an array of 5 integers

 float rates[40]; // an array of 40 floats

• C’s support for collections of values

• Often accessed via a loop:

int arr[5]; // an array of 5 integers

float rates[40]; // an array of 40 floats

for (i=0; i < 5; i++) {

 arr[i] = i;

 rates[i] = arr[i]*2;

}

Get/Set value using brackets [] to index into array.

arr

[0] [1] [2] [3] [4]

Arrays

What does this for loop print?

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?

• Array variable name means, to the compiler, the beginning of the
memory chunk. (The memory address)

– january_temps” (without brackets!) Location of [0] in memory.

– Keep this in mind, we’ll return to it soon (functions).

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?

• The index refers to an offset from the start of the array

– e.g., january_temps[3] means “three integers forward from the

starting address of january_temps”

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Array Characteristics

int january_temps[31]; // Daily high temps

• Asking for january_temps[35]?

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

C does NOT do bounds checking.

• Python: error

• C: “Sure! I don’t care ..” <ominous silence while bad things

happen>

Array Characteristics

int january_temps[31]; // Daily high temps

• Asking for january_temps[35]?

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

C does NOT do bounds checking.

• Python: error

• C: “Sure! I don’t care ..” <ominous silence while bad things

happen>

https://www.cs.fsu.edu/~baker/opsys/notes/bufferoverflow.html

Given what we know about arrays, how can we add a

temperature reading second element in the array?

int january_temps[31]; // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

1. scanf(“%d”, january_temps);

2. scanf(“%d”, &january_temps[1]);

3. None of the above

Given what we know about arrays, how can we add a

temperature reading second element in the array?

int january_temps[31]; // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

1. scanf(“%d”, january_temps);

2. scanf(“%d”, &january_temps[1]);

3. None of the above

Functions and Stack Diagrams

Functions: Specifying Types

Need to specify the return type of the function, and the type of each parameter:

<return type> <func name> (<param list>) {

 // declare local variables first

 // then function statements

 return <expression>;

}

// my_function takes 2 int values and returns an int

int my_function(int x, int y) {

 int result;

 result = x;

 if(y > x) {

 result = y+5;

 }

 return result*2;

}

Compiler will yell at you if you
try to pass the wrong type!

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

func:
a:

b:

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

func:
a:

b:

4

7

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

func:
a:

b:

9

7

Note: This doesn’t change!

No impact on values in main!

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

2

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main() {

 // declare two integers

 int x, y;

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

2

Output: 4, 2

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;//DRAW STACK DIAGRAM AT THIS POINT

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: What does the name of an
array mean to the compiler?

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: Still accessing the same
memory location of array in func

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

105

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

105

0a:

my_array:
(Mem address)

0y:
func:

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

105

0a:

my_array:
(Mem address)

1y:
func:

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

80

func:
0a:

my_array:
(Mem address)

1y:

What will this print?
int func(int a, int y, int my_array[]) {

 y = 1;

 my_array[a] = 0;

 my_array[y] = 8;

 return y;

}

int main() {

 int x;

 int values[2];

 x = 0;

 values[0] = 5;

 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);

}

(Mem address)

Stack

main: x:

values:

0

80

Fear not!

• Don’t worry, I don’t expect you to have mastered C.

• It’s a skill you’ll pick up as you go.

• We’ll revisit these topics when necessary.

• When in doubt: solve the problem in English, whiteboard pictures,
whatever else!

– Translate to C later.

– Eventually, you’ll start to think in C.

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Announcements
	Slide 3: Reading Quiz

	Introduction to C programming
	Slide 13: The First “Computers”: Women
	Slide 14: How did we get to C?
	Slide 15: Why C in this course?
	Slide 16: What was going on behind the curtains?
	Slide 17: More than what you would think!
	Slide 18: The mystery revealed!
	Slide 19: Python versus C: Paradigms
	Slide 20: Python versus C: Paradigms
	Slide 21: So, the point(er) is….?
	Slide 22: So, the point(er) is….?
	Slide 23: Python versus C: Paradigms
	Slide 24: Hello World
	Slide 25: Hello World
	Slide 26: Hello World
	Slide 27: Hello World
	Slide 28: “White Space”
	Slide 29: Are these the same program?
	Slide 30: Are these the same program?
	Slide 31: Hello World
	Slide 32: Types
	Slide 33: Type Matters!
	Slide 34: Types in C
	Slide 35: We have to explicitly declare variable types ahead of time? Lame! Python figured out variable types for us, why doesn’t C?
	Slide 36: We have to explicitly declare variable types ahead of time? Lame! Python figured out variable types for us, why doesn’t C?
	Slide 37: Numerical Type Comparison

	Local Variables, Booleans, Conditions, For Loops
	Slide 38: An Example with Local Variables
	Slide 39: An Example with Local Variables
	Slide 40: An Example with Local Variables
	Slide 41: Operators: need to think about type
	Slide 42: Boolean values in C?
	Slide 43: Operators: consider the type
	Slide 44: Boolean values in C
	Slide 45: Boolean values in C
	Slide 46: Conditional Statements
	Slide 47: Conditional Statements
	Slide 48: While Loops
	Slide 49: While Loops
	Slide 50: For loops: different than Python’s
	Slide 51: printf function

	Arrays
	Slide 52: Data Collections in C
	Slide 53: Arrays
	Slide 54
	Slide 55: Array Characteristics
	Slide 56: Array Characteristics
	Slide 57: Array Characteristics
	Slide 58: Array Characteristics
	Slide 59: Given what we know about arrays, how can we add a temperature reading second element in the array?
	Slide 60: Given what we know about arrays, how can we add a temperature reading second element in the array?

	Functions
	Slide 61: Functions and Stack Diagrams
	Slide 62: Functions: Specifying Types
	Slide 63: Function Arguments
	Slide 64: Function Arguments
	Slide 65: Function Arguments
	Slide 66: Function Arguments
	Slide 67: Function Arguments
	Slide 68: Function Arguments
	Slide 69: Function Arguments
	Slide 70: What will this print?
	Slide 71: What will this print?
	Slide 72: What will this print?
	Slide 73: What will this print?
	Slide 74: What will this print?
	Slide 75: What will this print?
	Slide 76: What will this print?
	Slide 77: Fear not!

