
CS 31: Introduction to Computer Systems

03: Binary Arithmetic and Introduction to C
01-28-2025

Announcements

• Register your clicker! https://forms.gle/YBFvNWPTXgiySMHx5

• Reading quizzes count from this week!

• Keep an eye out for the CS Department Mentoring Program
Email!

• Edstem: Turn on notifications so you get email when we post

• HW 1 is out! – New Due Date is Monday Feb 3rd

• Please give me your accommodation forms this week

https://forms.gle/YBFvNWPTXgiySMHx5

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

What we will learn this week

1. Operations on binary data (continued from last week)

• Addition and Subtraction on integer types. (e.g.: 6 + 12 15 – 5 -9 + 12)

• Some other operations on bits

• Bit shifting, bit-wise OR, AND and NOT

2. Introduction to C

• Comparison of C vs. Python

• Basics of C programming

• Data organization and strings

What is a computer system?

Hardware (HW) & Special Systems Software (OS) that work together to
run application programs

What are the goals of our system? Correctness

• Is x2 >= 0?
• Floating point values: Yes!

• Integers
• 40000 * 40000 = 1600000000

• 50000 * 50000 = ??

example: courtesy Eleanor Birrell

Two’s Complement Representation (for four bit values)

Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

• Addition moves to the right
• Subtraction moves to the left.

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)

Addition
Subtraction

-127 127

“Like wrapping
number line
around a circle”

Used
Today

Let’s try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit
and 8-bit examples:

4 bit numbers (4th bit is the sign bit)

0110

1110

8 bit numbers (8th bit is the sign bit)

00001010

11111111

Let’s try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit and 8-bit
examples:

4 bit numbers (4th bit is the sign bit)

0110 = -23 x 0 + 22 x 1 + 21 x 1 + 20 x 0 = 6

1110 = -23 x 1 + 22 x 1 + 21 x 1 + 20 x 0 = -2

8 bit numbers (8th bit is the sign bit)

00001010= -27 x 0 + 26 x 0 + 25 x 0 + 24 x 0

 +23 x 1 + 22 x 0 + 21 x 1 + 20 x 0 = 10

11111111= -27 x 1 + 26 x 1 + 25 x 1 + 24 x 1

 +23 x 1 + 22 x 1 + 21 x 1 + 20 x 1 = -1

“If we interpret…”

• What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12 (%u)

• …as signed (two’s complement), 4-bit value: -4 (%d)

• …as an 8-bit value: 12
(i.e., 00001100)

Two’s Complement Negation

• To negate a value x, we want to find y such that x + y = 0.

• For N bits, y = 2N - x
0

-127

-1 1

127

-128

Negation Example (8 bits)

• For N bits, y = 2N - x

• Negate 00000010 (2)
• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
• Put -2 where 254 would be

if wheel was unsigned.

• 254 in binary is 11111110

Given 11111110, it’s 254 if interpreted as
unsigned and -2 interpreted as signed.

unsigned

128

254
255

0

0

-127

-1 1

127
-128

-2

signed

Negation Shortcut

• A much easier, faster way to negate:
• Flip the bits (0’s become 1’s, 1’s become 0’s)

• Add 1

• Negate 00101110 (46)
• 28 - 46 = 256 - 46 = 210

• 210 in unsigned binary is 11010010 = -46

46: 00101110

Flip the bits: 11010001

Add 1

+ 1

-46: 11010010

Negation Summary: Two Ways

4-bit Examples

x -x 24 - x Bit flip + 1

0000 0000 10000 – 0000 = 0000 1111 + 1 = 0000

0001 1111 10000 – 0001 = 1111 1110 + 1 = 1111

0010 110 10000 – 0010 = 1110 1101 + 1 = 1110

0111 1001 10000 – 0111 = 1001 1000 + 1 = 1001

Decimal to Two’s Complement with 8-bit values
(high-order bit is the sign bit)

For positive values, use same algorithm as unsigned
For example, 6: 6 - 4 = 2 (4:22)

 2 – 2 = 0 (2:21): 00000110

For negative values:
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

For example, -3:

 3: 00000011

 negate: 11111100+1 = 11111101 = -3

For negative values:

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

What is the 8-bit, two’s complement representation for -7?

What is the 8-bit, two’s complement representation for -7?

For negative values:

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

-7 = (1) 7: 00000111
 (2) negate: 11111000 + 1 = 11111001

Addition & Subtraction

• Addition is the same as for unsigned

– One exception: different rules for overflow

– Can use the same hardware for both

• Subtraction is the same operation as addition

– Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)

– ~7 is shorthand for “flip the bits of 7”

Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

 possible +1 input-------->

Let’s call this possible +1 input: “Carry in”
 (0: on add, 1: on subtract)

4-bit signed Examples:

Subtraction via Addition:

– a-b is same as a + ~b + 1

 Subtraction: flip bits and add 1
 3 - 6 = 0011

 1001 (6: 0110 ~6: 1001)

 + 1

 1101 = -3

Addition:
 3 + -6 = 0011

 + 1010

 1101 = -3

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

 13 - 1 =

Signed subtraction: flip bits and add 1

 -3 - 1 =

A. 1100 & 1100
B. 1100 & 1010
C. 1010 & 1010
D.1001 & 1100

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

 13 - 1 = 1101

 1110 (1: 0001 ~1: 1110)

 + 1

 1 1100 = 12

Signed subtraction: flip bits and add 1

 -3 - 1 = 1101

 1110

 + 1

 1 1100 = -4

Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone: Adding two large
positive values

Danger Zone: adding two large
negative values

If we add a positive number and a negative number, will we

have overflow? (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone

If we add a positive number and a negative number, will we

have overflow? (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone

Two’s Complement Overflow For Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result

 3+4=7 -2+-3=-5

 0011 1110

 +0100 +1101

 0111 1 1011

no overflow

0

-127

-1 1

127

-128

Two’s Complement Overflow For Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result sign of operands ≠ sign of result

 3+4=7 -2+-3=-5 4+7=11 -6-8=-14

 0011 1110 0100 1010

 +0100 +1101 +0111 +1000

 0111 1 1011 1011 1 0010

no overflow overflow

Recall: Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

 possible +1 input-------->

Let’s call this possible +1 input: “Carry in”
 (0: on add, 1: on subtract)

How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100

 9 + 6 = 1001 + 0110 + 0 = 0 1111

 3 + 6 = 0011 + 0110 + 0 = 0 1001

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011

 3 - 6 = 0011 + 1001 + 1 = 0 1101

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4

 9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15

 3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3

 3 - 6 = 0011 + 1001 + 1 = 0 1101 = 13

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

Notice a Pattern?

How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4

 9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15

 3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3

 3 - 6 = 0011 + 1001 + 1 = 0 1101 = 13

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

Notice a Pattern?

Overflow Rule Summary

Unsigned: overflow

– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout

 0 0 0

 0 1 1

 1 0 1

 1 1 0

Two’s Complement Overflow For Subtraction

Subtraction Overflow Rules Summarized:

• Overflow occurs IFF the sign bits of the subtraction operands are
different, and the sign bit of the Result and Subtrahend are the same
as shown below:

– Minuend - Subtrahend = Result

– If positive – negative = negative (overflow)

– If negative – positive = positive (overflow)

Two’s Complement Overflow For Subtraction

– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a positive + positive.

– If this sum does not result in a positive value we have an overflow

Minuend Subtrahend Result

no overflow overflow

Subtrahend and Result have different sign bits

2-(-3)=5

 0010

 -1110

3-(-4)=7

 0011

 -1100

0010

 +0011

 0101

0011

 +0100

 0111

2-(-6)=8

 0010

 -1010

3-(-7)=10

 0011

 -1001

0010

 +0110

 1000(-8)

0011

 +0111

 1010(-6)

Subtrahend and Result have the same sign bits

Two’s Complement Overflow For Subtraction

– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow
• Intuition: We know a negative – positive number is equivalent to a negative + negative number.

– If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

no overflow overflow

Subtrahend and Result have different sign bits Subtrahend and Result have the same sign bits

-2-(3)=-5

 1110

 -0011

1110

 +1101

1 1011(-5)

-3-(4)=-7

 1101

 -0100

1101

 +1100

1 1001(-7)

-2-(7)=-9

 1110

 -0111

-4-(7)=-11

 1100

 -0111

1110

 +1001

1 0111(7)

1100

 +0111

1 0011(-6)

Two’s Complement Overflow For Subtraction

– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a positive + positive.

– If this sum does not result in a positive value we have an overflow

– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow
• Intuition: We know a negative – positive number is equivalent to a negative + negative number.

– If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

Minuend Subtrahend Result

Overflow Rule Summary

• Signed overflow:
– The sign bits of operands are the same, but the sign bit of result is different.

• Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout

 0 0 0

 0 1 1

 1 0 1

 1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Sign Extension

When combining signed values of different sizes, expand the smaller value to equivalent
larger size:

char y = 2, x = -13;

short z = 10;

 z = z + y; z = z + x;

0000000000001010 0000000000000101

+ 00000010 + 11110011

0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get same numeric value in larger number of
bytes.

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

 0111 ---> 0000 0111 obviously still 7

 1010 ---> 1111 1010 is this still -6?

 -128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

• For these, it doesn’t matter how the bits are interpreted
(signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting

Bit-wise Operators

• Bit operands, Bit result (interpret as appropriate for the context)

 & (AND) | (OR) ~(NOT) ^(XOR)

 A B A & B A | B ~A A ^ B

 0 0 0 0 1 0

 0 1 0 1 1 1

 1 0 0 1 0 1

 1 1 1 1 0 0

 01101010 01010101 10101010 ~10101111

 & 10111011 |b00100001 ^ 01101001 01010000

 00101010 b01110101 11000011

More Operations on Bits (Shifting)

Bit-shift operators: << left shift, >> right shift

 01010101 << 2 is 01010100

 2 high-order bits shifted out

 2 low-order bits filled with 0

 01101010 << 4 is 10100000

 01010101 >> 2 is 00010101

 01101010 >> 4 is 00000110

 10101100 >> 2 is 00101011 (logical shift)

 or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Try some 4-bit examples:

bit-wise operations:
• 0101 & 1101
• 0101 | 1101

Logical (unsigned) bit shift:
• 1010 << 2
• 1010 >> 2

Arithmetic (signed) bit shift:
• 1010 << 2
• 1010 >> 2

Try some 4-bit examples:

bit-wise operations:
• 0101 & 1101 = 0101
• 0101 | 1101 = 1101

Logical (unsigned) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 0010

Arithmetic (signed) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 1110

Additional Info: (not assessable) Fractional binary numbers

0 1-1….-11982 15 999…99

-1

2

1

8

1

2

How do we represent fractions in binary?

Slide 50

Additional Info: (not assessable) Floating Point Representation

1 bit for sign sign | exponent | fraction |
 8 bits for exponent
 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010

 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

You’re not expected to memorize this

Summary

• Images, Word Documents, Code, and Video can represented in bits.

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2
N
 unique values

• A number is written as a sequence of digits: in the decimal base system

– [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

– For any base system:

– [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

– Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit

value is 255.

– Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Announcements
	Slide 3: Reading Quiz

	Two's Complement
	Slide 10: What we will learn this week
	Slide 11: What is a computer system?
	Slide 12
	Slide 13: Let’s try some more examples
	Slide 14: Let’s try some more examples
	Slide 15: “If we interpret…”
	Slide 16: Two’s Complement Negation
	Slide 17: Negation Example (8 bits)
	Slide 18: Negation Shortcut
	Slide 19: Negation Summary: Two Ways
	Slide 20: Decimal to Two’s Complement with 8-bit values (high-order bit is the sign bit)
	Slide 21: What is the 8-bit, two’s complement representation for -7?
	Slide 22: What is the 8-bit, two’s complement representation for -7?

	Addition and Subtraction
	Slide 23: Addition & Subtraction
	Slide 24: Subtraction Hardware
	Slide 25: 4-bit signed Examples:
	Slide 26: Signed & Unsigned 4-bit Subtraction:
	Slide 27: Signed & Unsigned 4-bit Subtraction:
	Slide 28: Overflow, Revisited
	Slide 29: If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)
	Slide 30: If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)
	Slide 31: Two’s Complement Overflow For Addition
	Slide 32: Two’s Complement Overflow For Addition
	Slide 33: Recall: Subtraction Hardware
	Slide 34: How many of these unsigned operations have overflowed?
	Slide 35: How many of these unsigned operations have overflowed?
	Slide 36: How many of these unsigned operations have overflowed?
	Slide 37: Overflow Rule Summary
	Slide 38: Two’s Complement Overflow For Subtraction
	Slide 39: Two’s Complement Overflow For Subtraction
	Slide 40: Two’s Complement Overflow For Subtraction
	Slide 41: Two’s Complement Overflow For Subtraction
	Slide 42: ⭐️Overflow Rule Summary⭐️
	Slide 43: Sign Extension
	Slide 44: Let’s verify that this works
	Slide 45: Operations on Bits
	Slide 46: Bit-wise Operators
	Slide 47: More Operations on Bits (Shifting)
	Slide 48: Try some 4-bit examples:
	Slide 49: Try some 4-bit examples:
	Slide 50: Additional Info: (not assessable) Fractional binary numbers
	Slide 51: Additional Info: (not assessable) Floating Point Representation
	Slide 52: Summary

