
CS 31: Introduction to Computer Systems

03: Binary Arithmetic and Introduction to C
01-28-2025



Announcements

• Register your clicker! https://forms.gle/YBFvNWPTXgiySMHx5

• Reading quizzes count from this week! 

• Keep an eye out for the CS Department Mentoring Program 
Email! 

• Edstem: Turn on notifications so you get email when we post

• HW 1 is out! – New Due Date is Monday Feb 3rd

• Please give me your accommodation forms this week

https://forms.gle/YBFvNWPTXgiySMHx5


Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1.  hold down power button until 

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success



What we will learn this week

1. Operations on binary data (continued from last week)

• Addition and Subtraction on integer types.  (e.g.:   6 + 12     15 – 5      -9 + 12)

• Some other operations on bits

• Bit shifting, bit-wise OR, AND and NOT 

2. Introduction to C

• Comparison of C vs. Python

• Basics of C programming

• Data organization and strings

  



What is a computer system?

Hardware (HW) & Special Systems Software (OS) that work together to 
run application programs

What are the goals of our system? Correctness

• Is x2 >= 0?
• Floating point values: Yes!

• Integers 
• 40000 * 40000 = 1600000000

• 50000 * 50000 = ??

example: courtesy Eleanor Birrell



Two’s Complement Representation  (for four bit values)

Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

• Addition moves to the right
• Subtraction moves to the left.

For an 8 bit range we can express 256 
unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)

Addition
Subtraction

-127 127

“Like wrapping
number line 
around a circle”

Used 
Today



Let’s try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion.  4-bit 
and 8-bit examples:

4 bit numbers (4th bit is the sign bit)

0110

1110

8 bit numbers (8th bit is the sign bit)

00001010

11111111  



Let’s try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion.  4-bit and 8-bit 
examples:

4 bit numbers (4th bit is the sign bit)

0110 = -23 x 0 + 22 x 1 + 21 x 1 + 20 x 0 = 6

1110 = -23 x 1 + 22 x 1 + 21 x 1 + 20 x 0 = -2

8 bit numbers (8th bit is the sign bit)

00001010= -27 x 0 + 26 x 0 + 25 x 0 + 24 x 0

                      +23 x 1 + 22 x 0 + 21 x 1 + 20 x 0 = 10

11111111= -27 x 1 + 26 x 1 + 25 x 1 + 24 x 1

                      +23 x 1 + 22 x 1 + 21 x 1 + 20 x 1 = -1

  



“If we interpret…”

• What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12  (%u)

• …as signed (two’s complement), 4-bit value: -4  (%d)

• …as an 8-bit value: 12
(i.e., 00001100)



Two’s Complement Negation

• To negate a value x, we want to find y such that x + y = 0.

• For N bits, y = 2N - x
0

-127

-1 1

127

-128



Negation Example (8 bits)

• For N bits, y = 2N - x

• Negate 00000010 (2)
• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
• Put -2 where 254 would be

if wheel was unsigned.

• 254 in binary is 11111110

Given 11111110, it’s 254 if interpreted as 
unsigned and -2 interpreted as signed.

unsigned

128

254
255

0

0

-127

-1 1

127
-128

-2

signed



Negation Shortcut

• A much easier, faster way to negate:
• Flip the bits (0’s become 1’s, 1’s become 0’s)

• Add 1

• Negate 00101110 (46)
• 28 - 46 = 256 - 46 = 210

• 210 in unsigned binary is 11010010 = -46

46:                 00101110 

Flip the bits: 11010001

Add 1            

+ 1

-46:                11010010



Negation Summary: Two Ways

4-bit Examples

x -x 24 - x Bit flip + 1

0000 0000 10000 – 0000  = 0000 1111 + 1 = 0000

0001 1111 10000 – 0001  = 1111 1110 + 1 = 1111

0010 110 10000 – 0010  = 1110 1101 + 1 = 1110

0111 1001 10000 – 0111  = 1001 1000 + 1 = 1001



Decimal to Two’s Complement with 8-bit values 
(high-order bit is the sign bit)

For positive values, use same algorithm as unsigned
For example, 6:  6 - 4 = 2 (4:22)

           2 – 2 = 0 (2:21):  00000110

For negative values: 
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

For example, -3:

    3: 00000011 

   negate: 11111100+1 = 11111101 = -3



For negative values: 

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

What is the 8-bit, two’s complement representation for -7?



What is the 8-bit, two’s complement representation for -7?

For negative values: 

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

-7   = (1) 7:  00000111
          (2) negate: 11111000 + 1 = 11111001 



Addition & Subtraction

• Addition is the same as for unsigned

– One exception: different rules for overflow

– Can use the same hardware for both

• Subtraction is the same operation as addition

– Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)

– ~7 is shorthand for “flip the bits of 7”



Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

               possible +1 input-------->

Let’s call this possible +1 input: “Carry in” 
          (0: on add, 1: on subtract)



4-bit signed Examples:

Subtraction via Addition:  

– a-b is same as  a + ~b + 1
                 

 Subtraction: flip bits and add 1
  3 -  6 =   0011

             1001     (6: 0110  ~6: 1001)

           + 1

             1101 = -3

Addition:
  3 + -6 =   0011 

           + 1010 

             1101 = -3



Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

  13 -  1 =

Signed subtraction: flip bits and add 1

  -3 - 1 =

A. 1100 & 1100
B. 1100 & 1010
C. 1010 & 1010
D.1001 & 1100



Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

  13 -  1 =  1101

             1110     (1: 0001  ~1: 1110)

           + 1

          1  1100 = 12

Signed subtraction: flip bits and add 1

  -3 - 1 =   1101

             1110 

           + 1

          1  1100 = -4



Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone: Adding two large 
positive values

Danger Zone: adding two large 
negative values



If we add a positive number and a negative number, will we 

have overflow?  (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone



If we add a positive number and a negative number, will we 

have overflow?  (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone



Two’s Complement Overflow For Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result

    3+4=7   -2+-3=-5  

     0011     1110 

    +0100    +1101 

     0111   1 1011 

no overflow

0

-127

-1 1

127

-128



Two’s Complement Overflow For Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result               sign of operands ≠ sign of result

    3+4=7   -2+-3=-5          4+7=11   -6-8=-14 

     0011     1110             0100       1010

    +0100    +1101            +0111      +1000

     0111   1 1011             1011     1 0010

      

no overflow overflow



Recall: Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

               possible +1 input-------->

Let’s call this possible +1 input: “Carry in” 
          (0: on add, 1: on subtract)



How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

  9 + 11  =   1001 + 1011 + 0 =  1  0100

  9 +  6  =   1001 + 0110 + 0 =  0  1111

  3 +  6  =   0011 + 0110 + 0 =  0  1001

  

Subtraction (carry-in = 1)

  6 -  3  =   0110 + 1100 + 1  = 1  0011

  3 -  6  =   0011 + 1001 + 1  = 0  1101

          

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out



How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

  9 + 11  =   1001 + 1011 + 0 =  1  0100 = 4

  9 +  6  =   1001 + 0110 + 0 =  0  1111 = 15

  3 +  6  =   0011 + 0110 + 0 =  0  1001 = 9

  

Subtraction (carry-in = 1)

  6 -  3  =   0110 + 1100 + 1  = 1  0011 = 3

  3 -  6  =   0011 + 1001 + 1  = 0  1101 = 13

          

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

Notice a Pattern?



How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

  9 + 11  =   1001 + 1011 + 0 =  1  0100 = 4

  9 +  6  =   1001 + 0110 + 0 =  0  1111 = 15

  3 +  6  =   0011 + 0110 + 0 =  0  1001 = 9

  

Subtraction (carry-in = 1)

  6 -  3  =   0110 + 1100 + 1  = 1  0011 = 3

  3 -  6  =   0011 + 1001 + 1  = 0  1101 = 13

          

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

Notice a Pattern?



Overflow Rule Summary

Unsigned: overflow

– The carry-in bit is different from the carry-out.

Cin  Cout      Cin XOR Cout

 0   0            0

 0   1            1

 1   0            1

 1   1            0



Two’s Complement Overflow For Subtraction

Subtraction Overflow Rules Summarized: 

• Overflow occurs IFF the sign bits of the subtraction operands are 
different, and the sign bit of the Result and Subtrahend are the same 
as shown below: 

– Minuend - Subtrahend = Result

– If positive – negative = negative (overflow)

– If negative – positive = positive  (overflow)



Two’s Complement Overflow For Subtraction

– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand  - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a positive + positive. 

– If this sum does not result in a positive value we have an overflow

Minuend Subtrahend Result

no overflow overflow

Subtrahend and Result have different sign bits

2-(-3)=5

  0010

 -1110  

3-(-4)=7

  0011

 -1100

0010

 +0011

  0101

0011

 +0100

  0111

2-(-6)=8

  0010

 -1010  

3-(-7)=10

  0011

 -1001

0010

 +0110

  1000(-8)

0011

 +0111

  1010(-6)

Subtrahend and Result have the same sign bits



Two’s Complement Overflow For Subtraction

– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result:  Overflow
• Intuition: We know a negative – positive number is equivalent to a negative + negative number. 

– If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

no overflow overflow

Subtrahend and Result have different sign bits Subtrahend and Result have the same sign bits

-2-(3)=-5

  1110

 -0011  

1110

 +1101

1 1011(-5)

-3-(4)=-7

  1101

 -0100

1101

 +1100

1 1001(-7)

-2-(7)=-9

  1110

 -0111  

-4-(7)=-11

  1100

 -0111

1110

 +1001

1 0111(7)

1100

 +0111

1 0011(-6)



Two’s Complement Overflow For Subtraction

– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand  - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a positive + positive. 

– If this sum does not result in a positive value we have an overflow

– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result:  Overflow
• Intuition: We know a negative – positive number is equivalent to a negative + negative number. 

– If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

Minuend Subtrahend Result



Overflow Rule Summary

• Signed overflow:
– The sign bits of operands are the same, but the sign bit of result is different.

• Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin  Cout      Cin XOR Cout

 0   0            0

 0   1            1

 1   0            1

 1   1            0

So far, all arithmetic on values that were the same size.  What if they’re different?



Sign Extension

When combining signed values of different sizes, expand the smaller value to equivalent 
larger size:

char y = 2, x = -13; 

short z = 10;

   z = z + y;                z = z + x;

0000000000001010          0000000000000101

+       00000010          +       11110011

0000000000000010          1111111111110011

Fill in high-order bits with sign-bit value to get same numeric value in larger number of 
bytes.



Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

 0111   --->  0000 0111 obviously still 7

 1010   --->  1111 1010 is this still -6?

 -128 + 64 + 32  + 16 +  8 + 0 + 2 + 0 =  -6    yes!



Operations on Bits

• For these, it doesn’t matter how the bits are interpreted
(signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting



Bit-wise Operators

• Bit operands, Bit result (interpret as appropriate for the context)

                  & (AND) | (OR)       ~(NOT)      ^(XOR)

    A    B      A & B    A | B    ~A    A ^ B

  0    0        0        0       1      0

  0    1        0        1       1      1

  1    0        0        1       0      1

  1    1        1        1       0      0

   01101010    01010101     10101010   ~10101111

 & 10111011    |b00100001   ^ 01101001    01010000

   00101010     b01110101     11000011



More Operations on Bits (Shifting)

Bit-shift operators:   << left shift,  >> right shift

 01010101 << 2  is 01010100     

                   2 high-order bits shifted out

                   2 low-order bits filled with 0

 01101010 << 4  is 10100000 

 01010101 >> 2  is 00010101

 01101010 >> 4  is 00000110

 10101100 >> 2  is 00101011 (logical shift) 

                or 11101011 (arithmetic shift)

Arithmetic right shift:   fills high-order bits w/sign bit
C automatically decides which to use based on type:   signed: arithmetic, unsigned: logical



Try some 4-bit examples:

bit-wise operations:
•    0101 & 1101
•    0101 | 1101

Logical (unsigned) bit shift:
•    1010 << 2
•    1010 >> 2

Arithmetic (signed) bit shift:
•    1010 << 2
•    1010 >> 2



Try some 4-bit examples:

bit-wise operations:
•    0101 & 1101 = 0101
•    0101 | 1101  = 1101

Logical (unsigned) bit shift:
•    1010 << 2 = 1000
•    1010 >> 2 = 0010

Arithmetic (signed) bit shift:
•    1010 << 2 = 1000
•    1010 >> 2 = 1110



Additional Info: (not assessable) Fractional binary numbers

0 1-1….-11982 15 999…99

-1

2

1

8

1

2

How do we represent fractions in binary?

Slide 50



Additional Info: (not assessable) Floating Point Representation

1  bit for sign              sign |   exponent |  fraction |
  8  bits for exponent
 23 bits for precision

               value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out
 
0x40ac49ba: 0 10000001   01011000100100110111010

     sign = 0 exp = 129   fraction = 2902458

           = 1*1.2902458*22 = 5.16098

You’re not expected to memorize this



Summary

• Images, Word Documents, Code, and Video can represented in bits. 

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2
N
 unique values

• A number is written as a sequence of digits: in the decimal base system

– [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

– For any base system: 

– [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

– Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit 

value is 255. 

– Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128). 
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