CS 31: Introduction to Computer Systems 03: Binary Arithmetic and Introduction to C 01-28-2025

Announcements

- Register your clicker! <u>https://forms.gle/YBFvNWPTXgiySMHx5</u>
- Reading quizzes count from this week!
- So Keep an eye out for the CS Department Mentoring Program Email!
- Edstem: Turn on notifications so you get email when we post
- HW 1 is out! <u>New Due Date is Monday Feb 3rd</u>
- Please give me your accommodation forms this week

Reading Quiz

- Note the red border!
- 1 minute per question

- Check your frequency:
- Iclicker2: frequency AA
- Iclicker+: green light next to selection

For new devices this should be okay, For used you may need to reset frequency

Reset:

- hold down power button until blue light flashes (2secs)
- 2. Press the frequency code: AA vote status light will indicate success
- No talking, no laptops, phones during the quiz¹

What we will learn this week

1. Operations on binary data (continued from last week)

- Addition and Subtraction on integer types. (e.g.: 6 + 12 15 5 -9 + 12)
- Some other operations on bits
- Bit shifting, bit-wise OR, AND and NOT
- 2. Introduction to C
 - Comparison of C vs. Python
 - Basics of C programming
 - Data organization and strings

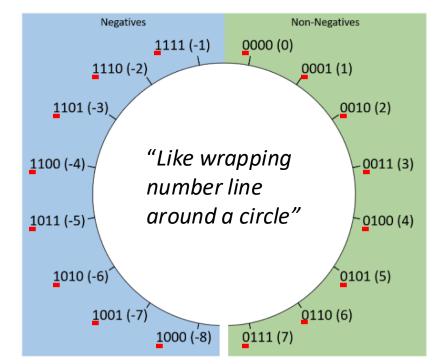
What is a computer system?

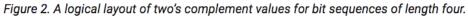
Hardware (HW) & Special Systems Software (OS) that work together to run application programs

What are the goals of our system? Correctness

- Is x² >= 0?
 - Floating point values: Yes!
 - Integers
 - 40000 * 40000 = 160000000
 - 50000 * 50000 = ??

Two's Complement Representation (for four bit values)

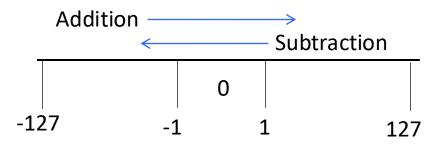




For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)

Borrow nice property from number line:



Only one instance of zero! Implies: -1 and 1 on either side of it.

- Addition moves to the right
- Subtraction moves to the left.

Let's try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit and 8-bit examples:

4 bit numbers (4th bit is the sign bit) 0110 1110

8 bit numbers (8th bit is the sign bit) 00001010 1111111

Let's try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit and 8-bit examples:

4 bit numbers (4th bit is the sign bit) $0110 = -2^3 \times 0 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0 = 6$ $1110 = -2^3 \times 1 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0 = -2$

```
8 bit numbers (8<sup>th</sup> bit is the sign bit)

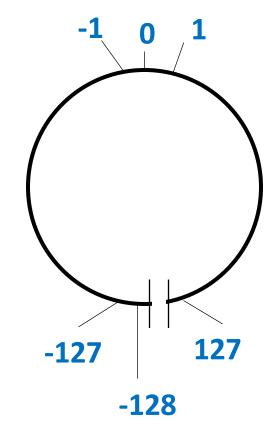
00001010 = -2^{7} \times 0 + 2^{6} \times 0 + 2^{5} \times 0 + 2^{4} \times 0
+2^{3} \times 1 + 2^{2} \times 0 + 2^{1} \times 1 + 2^{0} \times 0 = 10
11111111 = -2^{7} \times 1 + 2^{6} \times 1 + 2^{5} \times 1 + 2^{4} \times 1
+2^{3} \times 1 + 2^{2} \times 1 + 2^{1} \times 1 + 2^{0} \times 1 = -1
```

"If we interpret..."

- What is the decimal value of 1100?
- ...as unsigned, 4-bit value: 12 (%u)
- ...as signed (two's complement), 4-bit value: -4 (%d)
- ...as an 8-bit value: 12 (i.e., 00001100)

Two's Complement Negation

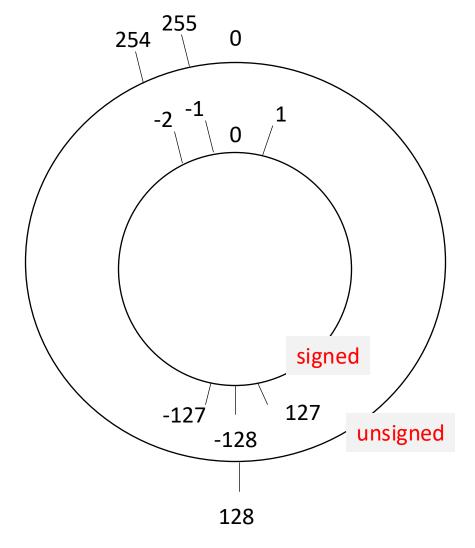
- To negate a value x, we want to find y such that x + y = 0.
- For N bits, $y = 2^{N} x$



Negation Example (8 bits)

- For N bits, $y = 2^N x$
- Negate 0000010 (2)
 - $2^8 2 = 256 2 = 254$
- Our wheel only goes to 127!
 - Put -2 where 254 would be if wheel was unsigned.
 - 254 in binary is 11111110

Given 11111110, it's 254 if interpreted as <u>unsigned</u> and -2 interpreted as <u>signed</u>.



Negation Shortcut

- A much easier, faster way to negate:
 - Flip the bits (0's become 1's, 1's become 0's)
 - Add 1
- Negate 00101110 (46)
 - $2^8 46 = 256 46 = 210$
 - 210 in unsigned binary is 11010010 = -46

46:	00101110
Flip the b	its: 11010001
Add 1	
<u>+1</u>	
-46:	11010010

Negation Summary: Two Ways

4-bit Examples			
x	-X	2 ⁴ - x	Bit flip + 1
0000	0000	10000 - 0000 = 0000	1111 + 1 = 0000
0001	1111	10000 - 0001 = 1111	1110 + 1 = 1111
0010	110	10000 - 0010 = 1110	1101 + 1 = 1110
0111	1001	10000 - 0111 = 1001	1000 + 1 = 1001

Decimal to Two's Complement with 8-bit values (high-order bit is the sign bit)

For positive values, use same algorithm as unsigned For example, 6: 6 - 4 = 2 $(4:2^2)$ 2 - 2 = 0 $(2:2^1)$: 00000110

For negative values:

- 1. convert the equivalent positive value to binary
- 2. then negate binary to get the negative representation

```
For example, -3:
```

```
3: 00000011
negate: 1111100+1 = 11111101 = -3
```

What is the 8-bit, two's complement representation for -7?

For negative values:

- 1. convert the equivalent positive value to binary
- 2. then negate binary to get the negative representation
- A. 11111001
- B. 00000111
- C. 11111000
- D. 11110011

What is the 8-bit, two's complement representation for -7?

For negative values:

- 1. convert the equivalent positive value to binary
- 2. then negate binary to get the negative representation
- A. <u>11111001</u>
- B. 00000111
- C. 11111000
- D. 11110011

-7 = (1) 7: 00000111 (2) negate: 11111000 + 1 = 11111001

Addition & Subtraction

- Addition is the same as for unsigned
 - One exception: different rules for overflow
 - Can use the same hardware for both
- Subtraction is the same operation as addition
 - Just need to negate the second operand...
- $6 7 = 6 + (-7) = 6 + (\sim 7 + 1)$

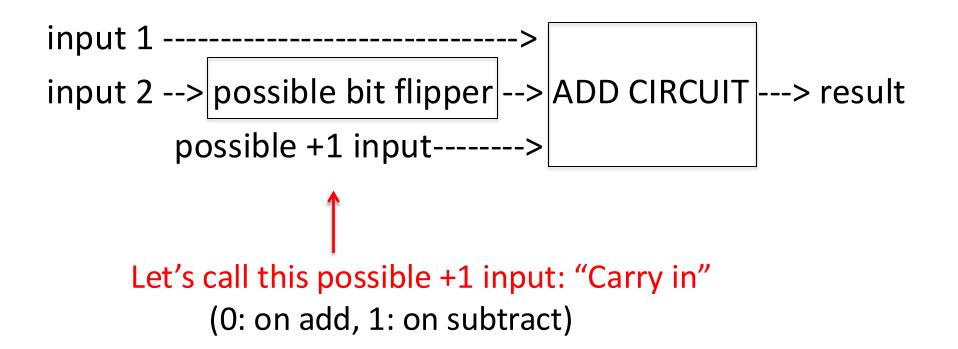
- ~7 is shorthand for "flip the bits of 7"

Subtraction Hardware

<u>Negate and add 1 to second operand:</u>

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1



4-bit signed Examples:

Subtraction via Addition:

- a-b is same as $a + ^b + 1$

Subtraction: flip bits and add 1

3 - 6 = 0011 1001 (6: 0110 ~6: 1001) + <u>1</u>
<math display="block">1101 = -3

Addition:

$$3 + -6 = 0011$$

+ 1010
1101 = -3

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

13 - 1 =

Signed subtraction: flip bits and add 1

-3 - 1 =

A. 1100 & 1100 B. 1100 & 1010 C. 1010 & 1010 D. 1001 & 1100 Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

$$13 - 1 = 1101$$

$$1110 (1: 0001 ~1: 1110)$$

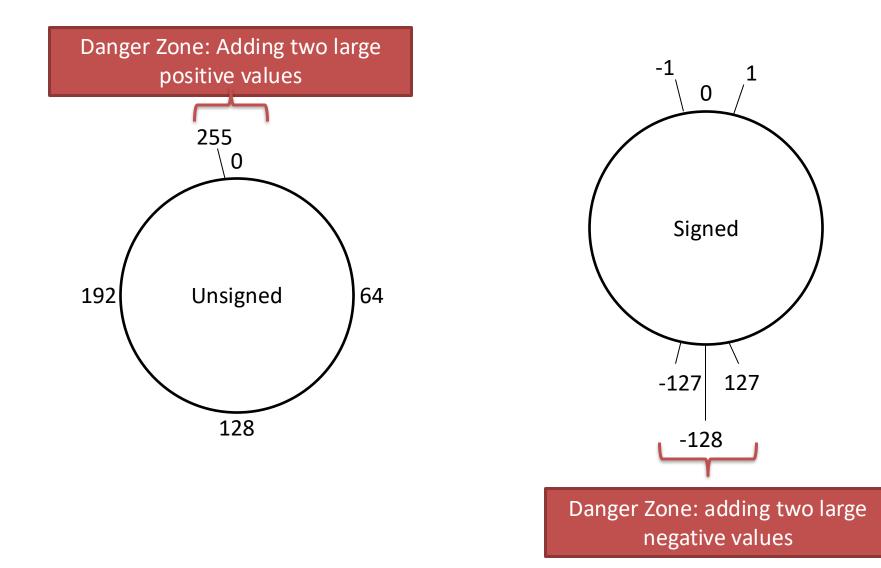
$$+ 1$$

$$1 1100 = 12$$

Signed subtraction: flip bits and add 1

$$\begin{array}{rcrcrcrcrcrcl}
-3 & -1 & = & 1101 \\ & & 1110 \\ & + & \underline{1} \\ 1 & 1100 & = & -4 \end{array}$$

Overflow, Revisited



If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)

-1

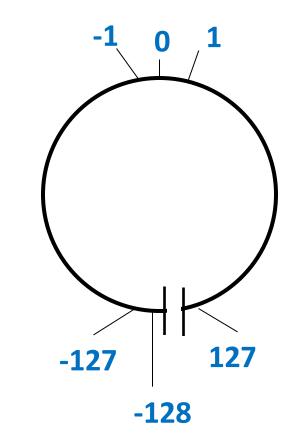
0 A. Always **B.** Sometimes Signed C. Never -127 127 -128 Danger Zone If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)

Two's Complement Overflow For Addition

- <u>Addition Overflow</u>: IFF the sign bits of <u>operands are the same</u>, but the sign bit of <u>result is different</u>.
- Not enough bits to store result!

sign of operands = sign of result

no c	overflow
3+4=7	-2+-3=-5
0 011	1 110
+ <mark>0</mark> 100	+ <mark>1</mark> 101
0111	1 1 011



Two's Complement Overflow For Addition

- <u>Addition Overflow</u>: IFF the sign bits of <u>operands are the same</u>, but the sign bit of <u>result is different</u>.
- Not enough bits to store result!

sign of operands = sign of result

no c	overflow
3+4=7	-2+-3=-5
0 011	1 110
+ <mark>0</mark> 100	+ <u>1101</u>
0 111	1 1 011

sign of operands ≠ sign of result

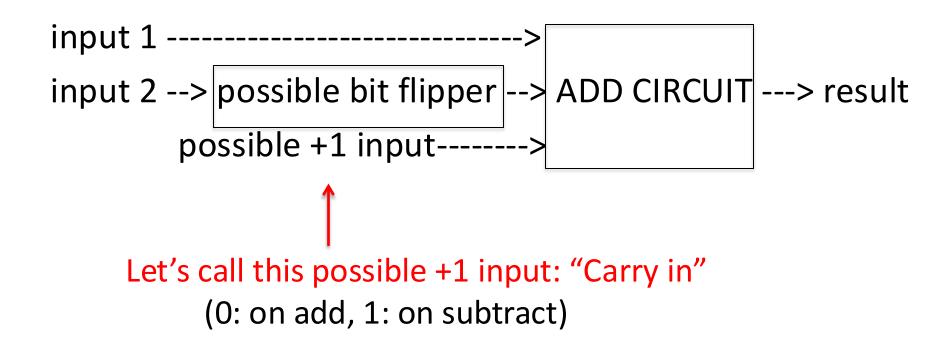
	overflow
4+7=11	-6-8=-14
0 100	1 010
+ <mark>0</mark> 111	+1000
1 011	1 0 010

Recall: Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1



How many of these <u>unsigned</u> operations have overflowed?

A. 1

B. 2

C. 3

4

5

D.

Ε.

Interpret these <u>as 4-bit unsigned values</u> (valid range 0 to 15):

carry-in carry-out Addition (carry-in = 0) ♦ ♦ 1 9 1001 + 1011 + 0 =0100 +11 =0 9 6 = 1001 + 0110 + 0 =1111 +3 + 1001 6 = 0011 + 0110 + 0 = 0(-3) Subtraction (carry-in = 1) 0110 + 1100+ 1 0011 = 1 6 =6 3 + 1001 + 1 = 0= 0011 1101 (-6)

How many of these <u>unsigned</u> operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15): Notice a Pattern?

Addition (carry-in = 0)

$$9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4$$

 $9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15$
 $3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9$
Subtraction (carry-in = 1)
 $6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3$
 $3 - 6 = 0011 + 1001 + 1 = 0 1101 = 13$
 (-6)
A.
B.
C.
D.
E.

How many of these <u>unsigned</u> operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15): Notice a Pattern?

Addition (carry-in = 0)

$$9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4$$

 $9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15$
 $3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9$
Subtraction (carry-in = 1)
 $6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3$
 $3 - 6 = 0011 + 1001 + 1 = 0 1101 = 13$
 (-3)
 (-3)
 (-3)
 (-3)
 (-6)
A.
B.
C.
D.
E.

Overflow Rule Summary

Unsigned: overflow

The carry-in bit is different from the carry-out.

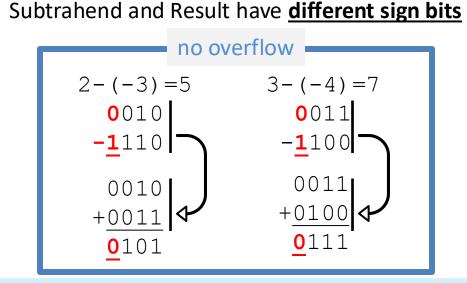
C_{in}	C_{out}	C_{in} XOR C_{out}
0	0	0
0	1	1
1	0	1
1	1	0

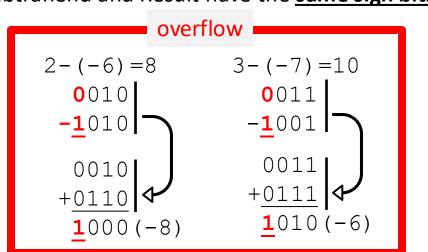
Subtraction Overflow Rules Summarized:

- Overflow occurs IFF the sign bits of the subtraction operands are different, and the sign bit of the Result and Subtrahend are the same as shown below:
 - Minuend Subtrahend = Result
 - If positive negative = negative (overflow)
 - If negative positive = positive (overflow)

– Rule 1:

- Positive operand Negative operand = Negative Result: Overflow
- **Intuition:** We know a positive negative is equivalent to a positive + positive.
 - If this sum does not result in a positive value we have an overflow



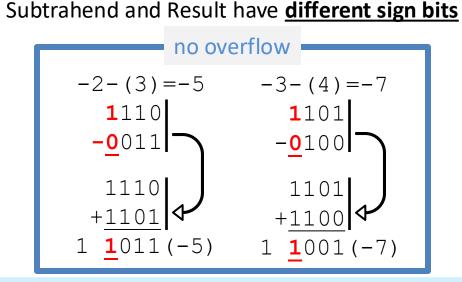


Subtrahend and Result have the same sign bits

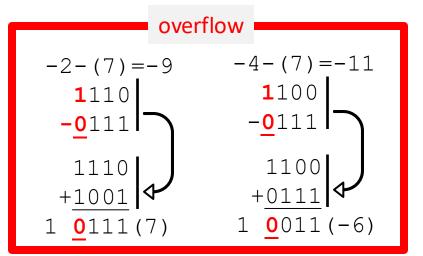
– Rule 2:

•

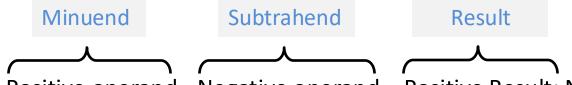
- Negative operand Positive operand = Positive Result: Overflow
- Intuition: We know a negative positive number is equivalent to a negative + negative number.
 - If this sum does not result in a negative value we have an overflow



Subtrahend and Result have the same sign bits

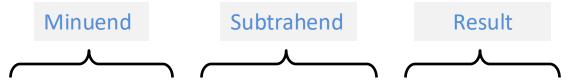


- Rule 1:



- Positive operand Negative operand = Positive Result: No Overflow
- Positive operand Negative operand = Negative Result: Overflow
- Intuition: We know a positive negative is equivalent to a positive + positive.
 - If this sum does not result in a positive value we have an overflow

– Rule 2:



- Negative operand Positive operand = Negative Result: No Overflow
- Negative operand Positive operand = Positive Result: Overflow
- Intuition: We know a negative positive number is equivalent to a negative + negative number.
 - If this sum does not result in a negative value we have an overflow

 \bigtriangleup Overflow Rule Summary \bigstar

- Signed overflow:
 - The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
 - The carry-in bit is different from the carry-out.

C_{in}	C_{out}	C_{in} XOR C_{out}
0	0	0
0	1	1
1	0	1
1	1	0

So far, all arithmetic on values that were the same size. What if they're different?

Sign Extension

When combining signed values of different sizes, expand the smaller value to equivalent larger size:

char y = 2, x = $-13;$ short z = 10;	
z = z + y;	z = z + x;
000000000001010 + 00000010 0000000000000	00000000000000000000000000000000000000

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

- 0111 ---> 0000 0111 obviously still 7
- 1010 ---> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

- For these, it doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

• Bit operands, Bit result (interpret as appropriate for the context)

& (AND) | (OR) ~(NOT) ^(XOR)

	A	В	A & B	A B	~A	A ^ B
	0	0	0	0	1	0
	0	1	0	1	1	1
	1	0	0	1	0	1
	1	1	1	1	0	0
	01101010	01	010101	10101010	~10	101111
&	10111011	<u> </u> 00	100001	<u>^ 01101001</u>	01	010000
	00101010	01	110101	11000011		

More Operations on Bits (Shifting)

Bit-shift operators: << left shift, >> right shift

Arithmetic right shift: fills high-order bits w/sign bit

C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Try some 4-bit examples:

bit-wise operations:

- 0101 & 1101
- 0101 | 1101

Logical (unsigned) bit shift:

- 1010 << 2
- 1010 >> 2

Arithmetic (signed) bit shift:

- 1010 << 2
- 1010 >> 2

Try some 4-bit examples:

bit-wise operations:

- 0101 & 1101 = **0101**
- 0101 | 1101 = **1101**

Logical (unsigned) bit shift:

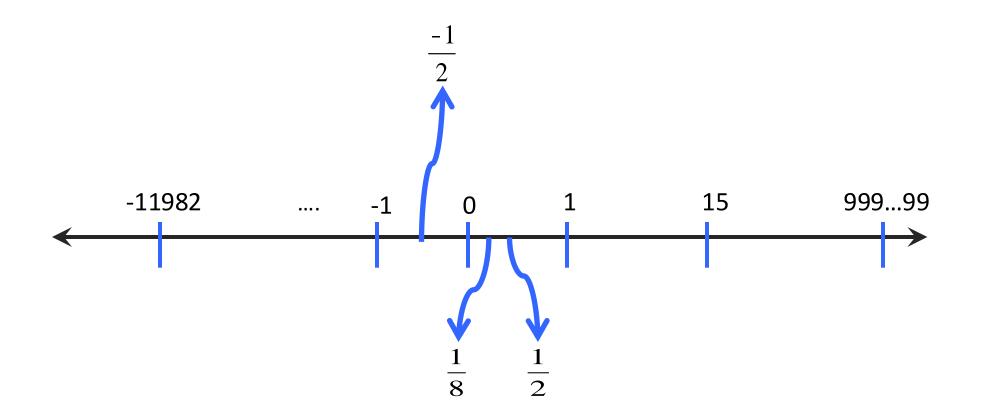
- 1010 << 2 = **1000**
- 1010 >> 2 = **0010**

Arithmetic (signed) bit shift:

- 1010 << 2 = **1000**
- 1010 >> 2 = **1110**

Additional Info: (not assessable) Fractional binary numbers

How do we represent fractions in binary?



Additional Info: (not assessable) Floating Point Representation

bit for sign sign exponent fraction
 bits for exponent
 bits for precision

value = $(-1)^{\text{sign}} * 1$.fraction * $2^{(\text{exponent-127})}$

let's just plug in some values and try it out

```
0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458
```

 $= 1 \times 1.2902458 \times 2^2 = 5.16098$

You're not expected to memorize this

Summary

- Images, Word Documents, Code, and Video can represented in bits.
- Byte or 8 bits is the smallest addressable unit
- N bits can represent 2^{N} <u>unique</u> values
- A number is written as a sequence of digits: in the decimal base system
 - $[dn * 10^n] + [dn-1 * 10^n-1] + ... + [d2 * 10^2] + [d1 * 10^1] + [d0 * 10^0]$
 - For any base system:
 - $[dn * b^n] + [dn-1 * b^n-1] + ... + [d2 * b^2] + [d1 * b^1] + [d0 * b^0]$
- Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
 - Each hexadecimal value can be represented by 4 bits. (2^4=16)
- <u>A finite storage space we cannot represent an infinite number of values</u>. For e.g., the max unsigned 8 bit value is 255.
 - Trying to represent a value >255 will result in an overflow.
- Two's Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).