
CS 31: Introduction to Computer Systems

02: Introduction & Data Representation
01-23-2025

Announcements

• Register your clicker! https://forms.gle/YBFvNWPTXgiySMHx5

• Submit Lab 0!

• Reading quizzes count from next week!

• Edstem: Turn on notifications so you get email when we post

https://forms.gle/YBFvNWPTXgiySMHx5

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

What is a computer system?

Hardware (HW) & Special Systems Software (OS) that work together to
run application programs

• HW executes program instructions

• OS that manages the computer HW

• OS also provides abstractions to the programs/users

Computer Hardware
Operating System

CPU | Memory | Storage

P1 P2 P3

P1
P2

P3

Program

// example C program
void main() {
 int authenticate;
 scanf(“Enter your
 username and pwd:”);
}

C program:

What is a computer system?

Hardware (HW) & Special Systems Software (OS) that work together to
run application programs

What are the goals of our system? Correctness

• Is x2 >= 0?
• Floating point values: Yes!

• Integers
• 40000 * 40000 = 1600000000

• 50000 * 50000 = ??

example: courtesy Eleanor Birrell

What we will learn this week

1. Binary Representation of program data types ex. 6, -4, ‘a’

• C data types and sizes, bit, byte, word

• signed and unsigned representation

2. Operations on binary data

• Addition and Subtraction on integer types. (e.g.: 6 + 12 15 – 5 -9 + 12)

• Some other operations on bits

• Bit shifting, bit-wise OR, AND and NOT

Number Representation

How many apples are there?

A. 12

B. 1100

C. c

Number Representation
How many apples are there?

A. 12 (decimal, base 10)

B. 0b1100 (binary, base 2)

C. 0xc (hexadecimal, base 16)

D. all of these

We are using different number systems to represent the concept of twelve

• to be clear about which representation:

• prefix binary with 0b

• prefix hex with 0x

E.g.: Without a prefix what does “10” refer to?

 decimal: 10, binary: 0b10 = 2 hex: 0x10 = 16!

Different Representations

• Binary: base 2 digits [0,1]

• Decimal: base 10 digits [0, 1, …, 9]

• Hexadecimal: base 16 digits [0, …,9,a,b,c,d,e,f]

Relationship between Binary and Hexadecimal: 16 is 24

• each hex digit is unique permutation of 4 binary digits

 0000: 0 0001:1 0010:2 0011:3 0100:4 0101:5 0110:6 0111:7

 1000: 8 1001:9 1010:a 1011:b 1100:c 1101:d 1110:e 1111:f

Why hex? Shorthand for binary that is easier for humans to read

0011111011111010 -> 0011 1110 1111 1010 -> 0x 3 e f a

Positional Notation: Decimal Base 10

A number, written as the sequence of digits

 dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9},

represents the value:

[dn*10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 =

6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Binary: Base 2

Used by computers: Indicated by prefixing number with 0b

A number, written as the sequence of digits in {0,1}

[dn * 2n] + [dn-1 * 2n-1] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

• 10101: 1*24 + 0*23 + 1*22 + 0*21 + 1*20

 = 16 + 0 + 4 + 0 + 1 = 21

What is the value of 0x1B7 in decimal?

A. 397

B. 409

C. 419

D. 437

E. 439
162 = 256

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

[dn * 16n] + [dn-1 * 16n-1] + ... +

[d2 * 162] + [d1 * 161] + [d0 * 160]

Converting between Hex and Binary

Hex to binary:

 expand each hex digit into its 4 binary digits:

 0xa12f: a 1 2 f

 1010 0001 0010 1111

 0b1010000100101111

Binary to hex:

group into sets of 4 digits

convert each set of 4 to a single hex digit:

0b1001010100001111: 1001 0101 0000 1111

 9 5 0 f

 0x950f

High-level Takeaway

• You can represent the same value in a variety of number systems /
bases.

• It’s all stored as binary in the computer.
• Presence/absence of voltage.

What is the value of 0x1B7 in decimal?

A. 397

B. 409

C. 419

D. 437

E. 439
162 = 256

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

[dn * 16n] + [dn-1 * 16n-1] + ... +

[d2 * 162] + [d1 * 161] + [d0 * 160]

Converting Decimal -> Binary

• Two methods:
• division by two remainder

• powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith bit):

idea: D example: D = 105 b0 = 1

 D = D/2 D = 52 b1 = 0

 D = D/2 D = 26 b2 = 0

 D = D/2 D = 13 b3 = 1

 D = D/2 D = 6 b4 = 0

 D = D/2 D = 3 b5 = 1

 D = D/2 D = 1 b6 = 1

 D = 0 (done) D = 0 b7 = 0

 105 = 01101001

Example: Converting 105 from Binary to Decimal

i = 0
while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

Method 2: Subtraction by powers of 2

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128

To convert 105:
• Find largest power of two that’s less than 105 (64)

• Subtract 64 (105 – 64 = 41), put a 1 in d6

• Subtract 32 (41 – 32 = 9), put a 1 in d5

• Skip 16, it’s larger than 9, put a 0 in d4

• Subtract 8 (9 – 8 = 1), put a 1 in d3

• Skip 4 and 2, put a 0 in d2 and d1

• Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

1 01 1 0 0 1

A. 1 0110 0011

B. 1 0110 0101

C. 1 0110 1001

D. 1 0111 0101

E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

What is the value of 357 in binary?

What is the value of 357 in binary?

A. 1 0110 0011

B. 1 0110 0101

C. 1 0110 1001

D. 1 0111 0101

E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

1 0 1 1 0 0 1 0 1
 d8 d7 d6 d5 d4 d3 d2 d1 d0

357 – 256 = 101
101 – 64 = 37

37 – 32 = 5
5 – 4 = 1

With N bits, can represent values: 0 to 2n-1

We can always add 0’s to the front of a number without changing it:

10110= 010110 = 00010110 = 0000010110

So far: Unsigned Integers

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Unsigned Integers

Unsigned Integers

Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a
finite storage space we cannot
represent an infinite number of
values!

Suppose we had one byte

• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256.

Unsigned Integers

Unsigned Addition (4-bit)

Works just like grade school addition

1. Add corresponding digits, starting with d0 digits

2. Carry if result is greater than or equal to the base

 Let’s try (6 + 4) in unsigned binary

 6 = 0110 (23 x 0 + 22 x 1 + 21 x 1 + 20 x 0)

 4 = 0100 (23 x 0 + 22 x 1 + 21 x 0 + 20 x 0)

Unsigned Addition (4-bit)

Works just like grade school addition

1. Add corresponding digits, starting with d0 digits

2. Carry if result is greater than or equal to the base

 Let’s try (6 + 4) in unsigned binary

 0b0110 6 12

 +0b0100 +4

 +

in binary 1+1 = 10
“0 carry the 1” out

Unsigned Addition (4-bit)

Works just like grade school addition

1. Add corresponding digits, starting with d0 digits

2. Carry if result is greater than or equal to the base

 Let’s try (6 + 4) in unsigned binary

 1

 0b0110 6 12

 +0b0100 +4

 + 0b1010 10

in binary 1+1 = 10
“0 carry the 1” out

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1

 0110 6 1100 12

 + 0100 + 4 + 1010 +10

 1010 10 1 0110 6

 ^no carry out ^carry out

Four bits give us range: 0 - 15
Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

in binary 1+1 = 10
“0 carry the 1” out

Let’s try some more examples (note down if you get a
carry out)

 0100 4 1111 15

 + 0100 + 4 + 0001 + 1

Carry out is indicative of something having gone wrong when adding unsigned values

in binary 1+1 = 10
“0 carry the 1” out

Let’s try some more examples (note down if you get a
carry out)

 0100 4 1111 15

 + 0100 + 4 + 0001 + 1

 0 1000 8 1 0000 0!

Carry out is indicative of something having gone wrong when adding unsigned values

in binary 1+1 = 10
“0 carry the 1” out

^no carry out ^carry out

-1

-127 (11111111)

-127

-1 (11111111)

A B

C: Put them somewhere else.

0 0

Suppose we want to support signed values (positive and negative) in 8 bits, where
should we put -1 and -127 on the circle? Why?

3(00000011)

-3(10000011)

-3(11111101)
3(00000011)

127 (01111111)
127 (01111111)

-1

-127 (11111111)

-127

-1 (11111111)

C: Put them somewhere else.

0 0

Suppose we want to support signed values (positive and negative) in 8 bits, where
should we put -1 and -127 on the circle? Why?

3(00000011)

-3(10000011)

-3(11111101)
3(00000011)

127 (01111111)
127 (01111111)

A: signed
magnitude

B: Two’s
complement

Two’s Complement Representation (for four bit values)

Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

• Addition moves to the right
• Subtraction moves to the left.

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)

Addition
Subtraction

-127 127

“Like wrapping
number line
around a circle”

Used
Today

Two’s Complement

• Only one value for zero

• Adding positive and negative just like unsigned addition
 11111111 (-1)

 + 00000001 (1)

 00000000 (0)

• With N bits, can represent the range:
– -2N-1 to 2N-1 – 1

• Most significant (first) bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:

 1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers are stored using two’s
complement! This is the standard!

Two’s Compliment

Each two’s compliment number is now:

 [-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just on the higher-order bit.
High-order bit is the sign-bit: encodes if number is negative or positive

(The other digits are unchanged and carry the same meaning as unsigned.)

If we interpret 11001 as a two’s complement number, what is

the value in decimal?

Each two’s compliment number is now:

[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25

If we interpret 11001 as a two’s complement number, what is

the value in decimal?

Each two’s compliment number is now:

[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7 -16 + 8 + 1 = -7

C. -9

D. -25

“If we interpret…”

• What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12 (%u)

• …as signed (two’s complement), 4-bit value: -4 (%d)

• …as an 8-bit value: 12

(i.e., 00001100)

Let’s try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit
and 8-bit examples:

4 bit numbers (4th bit is the sign bit)

0110

1110

8 bit numbers (8th bit is the sign bit)

00001010

11111111

Let’s try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit and 8-bit
examples:

4 bit numbers (4th bit is the sign bit)

0110 = -23 x 0 + 22 x 1 + 21 x 1 + 20 x 0 = 6

1110 = -23 x 1 + 22 x 1 + 21 x 1 + 20 x 0 = -2

8 bit numbers (8th bit is the sign bit)

00001010= -27 x 0 + 26 x 0 + 25 x 0 + 24 x 0

 +23 x 1 + 22 x 0 + 21 x 1 + 20 x 0 = 10

11111111= -27 x 1 + 26 x 1 + 25 x 1 + 24 x 1

 +23 x 1 + 22 x 1 + 21 x 1 + 20 x 1 = -1

Two’s Complement Negation

• To negate a value x, we want to find y such that x + y = 0.

• For N bits, y = 2N - x 0

-127

-1 1

127

-128

Negation Example (8 bits)

• For N bits, y = 2N - x

• Negate 00000010 (2)

– 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!

– Put -2 where 254 would be
if wheel was unsigned.

– 254 in binary is 11111110

Given 11111110, it’s 254 if interpreted as
unsigned and -2 interpreted as signed.

unsigned

128

254
255

0

0

-127

-1 1

127
-128

-2

signed

Negation Shortcut

• A much easier, faster way to negate:

– Flip the bits (0’s become 1’s, 1’s become 0’s)

– Add 1

• Negate 00101110 (46)

– 28 - 46 = 256 - 46 = 210

– 210 in binary is 11010010

46: 00101110

Flip the bits: 11010001

Add 1

+ 1

-46: 11010010

Negation Two Ways

4-bit Examples

x -x 24 - x Bit flip + 1

0000 0000 10000 – 0000 = 0000 1111 + 1 = 0000

0001 1111 10000 – 0001 = 1111 1110 + 1 = 1111

0010 110 10000 – 0010 = 1110 1101 + 1 = 1110

0111 1001 10000 – 0111 = 1001 1000 + 1 = 1001

Decimal to Two’s Complement with 8-bit values
(high-order bit is the sign bit)

For positive values, use same algorithm as unsigned
For example, 6: 6 - 4 = 2 (4:22)

 2 – 2 = 0 (2:21): 00000110

For negative values:

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

For example, -3:

 3: 00000011

 negate: 11111100+1 = 11111101 = -3

For negative values:

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

What is the 8-bit, two’s complement representation for -7?

What is the 8-bit, two’s complement representation for -7?

For negative values:

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

-7 = (1) 7: 00000111
 (2) negate: 11111000 + 1 = 11111001

Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

-1

2

1

8

1

2

How do we represent fractions in binary?

Slide 55

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |

 8 bits for exponent

 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010

 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

You are not expected to memorize this

Summary

• Images, Word Documents, Code, and Video can represented in bits.

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2
N
 unique values

• A number is written as a sequence of digits: in the decimal base system

• [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

• For any base system:

• [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

• Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit value is 255.

• Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

Aside: Signed Magnitude Representation (for 4 bit values)

• One bit (usually left-most) signals:
• 0 for positive
• 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a number) is very simple!

For one byte:

 0 = 00000000

 What about 10000000?

Major con: Two ways to represent zero!

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Announcements
	Slide 3: Reading Quiz

	Recap L01
	Slide 10: What is a computer system?
	Slide 11: What is a computer system?
	Slide 12: What we will learn this week
	Slide 13: Number Representation
	Slide 14: Number Representation
	Slide 15: Different Representations
	Slide 16: Positional Notation: Decimal Base 10
	Slide 17: Binary: Base 2
	Slide 18: What is the value of 0x1B7 in decimal?
	Slide 19: Converting between Hex and Binary
	Slide 20: High-level Takeaway
	Slide 21: What is the value of 0x1B7 in decimal?

	Converting Decimal to Binary
	Slide 22: Converting Decimal -> Binary
	Slide 23
	Slide 24: Method 2: Subtraction by powers of 2
	Slide 25: What is the value of 357 in binary?
	Slide 26: What is the value of 357 in binary?
	Slide 27: So far: Unsigned Integers
	Slide 28: So far: Unsigned Integers
	Slide 29: Unsigned Integers
	Slide 30: Unsigned Integers
	Slide 31: Unsigned Integers
	Slide 32: Unsigned Addition (4-bit)
	Slide 33: Unsigned Addition (4-bit)
	Slide 34: Unsigned Addition (4-bit)
	Slide 35: Unsigned Addition (4-bit)
	Slide 36: Let’s try some more examples (note down if you get a carry out)
	Slide 37: Let’s try some more examples (note down if you get a carry out)
	Slide 38: Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?
	Slide 39: Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?
	Slide 40
	Slide 41: Two’s Complement
	Slide 42: Two’s Compliment
	Slide 43: If we interpret 11001 as a two’s complement number, what is the value in decimal?
	Slide 44: If we interpret 11001 as a two’s complement number, what is the value in decimal?
	Slide 45: “If we interpret…”
	Slide 46: Let’s try some more examples
	Slide 47: Let’s try some more examples
	Slide 48: Two’s Complement Negation
	Slide 49: Negation Example (8 bits)
	Slide 50: Negation Shortcut
	Slide 51: Negation Two Ways
	Slide 52: Decimal to Two’s Complement with 8-bit values (high-order bit is the sign bit)
	Slide 53: What is the 8-bit, two’s complement representation for -7?
	Slide 54: What is the 8-bit, two’s complement representation for -7?
	Slide 55: Additional Info: Fractional binary numbers
	Slide 56: Additional Info: Floating Point Representation
	Slide 57: Summary
	Slide 58: Aside: Signed Magnitude Representation (for 4 bit values)

