CS 31: Introduction to Computer Systems 02: Introduction & Data Representation 01-23-2025

Announcements

- Register your clicker! <u>https://forms.gle/YBFvNWPTXgiySMHx5</u>
- Submit Lab 0!
- Reading quizzes count from next week!
- Edstem: Turn on notifications so you get email when we post

Reading Quiz

- Note the red border!
- 1 minute per question

- Check your frequency:
- Iclicker2: frequency AA
- Iclicker+: green light next to selection

For new devices this should be okay, For used you may need to reset frequency

Reset:

- hold down power button until blue light flashes (2secs)
- 2. Press the frequency code: AA vote status light will indicate success
- No talking, no laptops, phones during the quiz¹

What is a computer system?

Hardware (HW) & Special Systems Software (OS) that work together to run application programs

- HW executes program instructions
- OS that manages the computer HW
- OS also provides <u>abstractions</u> to the programs/users

What is a computer system?

Hardware (HW) & Special Systems Software (OS) that work together to run application programs

What are the goals of our system? Correctness

- Is x² >= 0?
 - Floating point values: Yes!
 - Integers
 - 40000 * 40000 = 160000000
 - 50000 * 50000 = ??

What we will learn this week

1. Binary Representation of program data types ex. 6, -4, 'a'

- C data types and sizes, bit, byte, word
- signed and unsigned representation
- 2. Operations on binary data
 - Addition and Subtraction on integer types. (e.g.: 6 + 12 15 5 -9 + 12)
 - Some other operations on bits
 - Bit shifting, bit-wise OR, AND and NOT

Number Representation

How many apples are there?

A. 12

B. 1100

С. с

Number Representation

How many apples are there?

- A. 12 (decimal, base 10)
- B. **Ob**1100 (binary, base 2)
- C. Oxc (hexadecimal, base 16)
- D. all of these

We are using different number systems to represent the concept of twelve

- to be clear about which representation:
 - prefix binary with Ob
 - prefix hex with Ox

E.g.: Without a prefix what does "10" refer to? decimal: 10, binary: 0b10 = 2 hex: 0x10 = 16!

Different Representations

- <u>Binary</u>: base 2 digits [0,1]
- <u>Decimal</u>: base 10 digits [0, 1, ..., 9]
- <u>Hexadecimal</u>: base 16 digits [0, ...,9,a,b,c,d,e,f]

<u>Relationship between Binary and Hexadecimal</u>: 16 is 2⁴

each hex digit is unique permutation of 4 binary digits
0000: 0 0001:1 0010:2 0011:3 0100:4 0101:5 0110:6 0111:7
1000: 8 1001:9 1010:a 1011:b 1100:c 1101:d 1110:e 1111:f

Why hex? Shorthand for binary that is easier for humans to read 0011111011111010 -> 0011 1110 1111 1010 -> 0x 3 e f a

Positional Notation: Decimal Base 10

A number, written as the sequence of digits

 $d_n d_{n-1} ... d_2 d_1 d_0$ where d is in {0,1,2,3,4,5,6,7,8,9},

represents the value:

 $[d_n*10^n] + [d_{n-1}*10^{n-1}] + \dots + [d_2*10^2] + [d_1*10^1] + [d_0*10^0]$ 64025 = 6*10⁴ + 4*10³ + 0*10² + 2*10¹ + 5*10⁰ 60000 + 4000 + 0 + 20 + 5

Binary: Base 2

Used by computers: Indicated by prefixing number with **Ob**

A number, written as the sequence of digits in {0,1}

$$[d_n * 2^n] + [d_{n-1} * 2^{n-1}] + ... + [d_2 * 2^2] + [d_1 * 2^1] + [d_0 * 2^0]$$

- 10101: $1^{*}2^{4} + 0^{*}2^{3} + 1^{*}2^{2} + 0^{*}2^{1} + 1^{*}2^{0}$
 - = 16 + 0 + 4 + 0 + 1 = 21

What is the value of 0x1B7 in decimal?

A.	397	[d _n * 16 ⁿ] + [d _{n-1} * 16 ⁿ⁻¹] + +
Β.	409	$[d_2 * 16^2] + [d_4 * 16^1] + [d_5 * 16^0]$
C.	419	
D.	437	$16^2 = 256$

E. 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Converting between Hex and Binary

Hex to binary:

expand each hex digit into its 4 binary digits:

Oxa12f: a 1 2 f 1010 0001 0010 1111 Ob1010000100101111

Binary to hex:

group into sets of 4 digits

convert each set of 4 to a single hex digit:

Ob1001010100001111: 1001 0101 0000 1111

9 5 0 f 0x950f

High-level Takeaway

- You can represent the same value in a variety of number systems / bases.
- It's all stored as binary in the computer.
 - Presence/absence of voltage.

What is the value of 0x1B7 in decimal?

A.	397	[d _n * 16 ⁿ] + [d _{n-1} * 16 ⁿ⁻¹] + +
Β.	409	$[d_2 * 16^2] + [d_4 * 16^1] + [d_5 * 16^0]$
C.	419	
D.	437	$16^2 = 256$

E. 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Converting Decimal -> Binary

- Two methods:
 - division by two remainder
 - powers of two and subtraction

Method 1: decimal value D, binary result b (b; is ith bit):

Example: Converting 105 from Binary to Decimal

idea:	D	example:	D	=	105	$b_0 = 1$	1
	D = D/2		D	=	52	$b_1 = 0$	
	D = D/2		D	=	26	$b_2 = 0$	
	D = D/2		D	=	13	$b_3 = 1$	
	D = D/2		D	=	6	$b_4 = 0$	
	D = D/2		D	=	3	$b_5 = 1$	
	D = D/2		D	=	1	$b_6 = 1$	
	D = 0 (c	done)	D	=	0	$b_7 = 0$	

i = 0
while (D > 0)
 if D is odd
 set b_i to 1
 if D is even
 set b_i to 0
 i++
 D = D/2

105 = 01101001

Method 2: Subtraction by powers of 2

•
$$2^0 = 1$$
, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$, $2^7 = 128$

To convert <u>105</u>:

- Find largest power of two that's less than 105 (64)
- Subtract 64 (105 64 = 41), put a 1 in d₆
- Subtract 32 (41 − 32 = <u>9</u>), put a 1 in d₅
- Skip 16, it's larger than 9, put a 0 in d₄
- Subtract 8 (9 8 = $\underline{1}$), put a 1 in d₃
- Skip 4 and 2, put a 0 in d₂ and d₁
- Subtract 1 (1 1 = 0), put a 1 in d₀ (Done)

What is the value of 357 in binary?

8 7654 3210

→ digit position

- A. 101100011
- B. 101100101
- C. 1 0110 1001
- D. 101110101
- E. 1 1010 0101

$$2^{0} = 1$$
, $2^{1} = 2$, $2^{2} = 4$, $2^{3} = 8$, $2^{4} = 16$,
 $2^{5} = 32$, $2^{6} = 64$, $2^{7} = 128$, $2^{8} = 256$

What is the value of 357 in binary?

	8 7654 3210										
Α.	1 0110 0011						3	57 –	- 256	5 = 1	.01
Β.	1 0110 0101							101	∟ — 6 ⊃ 7	4 =	37
C.	1 0110 1001								<u>- 37</u>	32 = - 4 :	= 5 = 1
D.	1 0111 0101		-				_	_	-	_	_
Ε.	1 1010 0101		$\frac{1}{d_8}$	$\frac{0}{d_7}$	$\frac{1}{d_6}$	$\frac{1}{d_5}$	$\frac{0}{d_4}$	$\frac{0}{d_3}$	$\frac{1}{d_2}$	$\frac{0}{d_1}$	$\frac{1}{d_0}$

$$2^{0} = 1$$
, $2^{1} = 2$, $2^{2} = 4$, $2^{3} = 8$, $2^{4} = 16$,
 $2^{5} = 32$, $2^{6} = 64$, $2^{7} = 128$, $2^{8} = 256$

So far: Unsigned Integers

With N bits, can represent values: 0 to 2ⁿ-1

We can always add 0's to the front of a number without changing it:

10110 = 010110 = 000010110 = 0000010110

So far: Unsigned Integers

With N bits, can represent values: 0 to 2ⁿ-1

- 1 byte: char, <u>unsigned char</u>
- 2 bytes: short, <u>unsigned short</u>
- 4 bytes: int, <u>unsigned int</u>, float
- 8 bytes: long long, <u>unsigned long long</u>, double
- 4 or 8 bytes: long, <u>unsigned long</u>

Unsigned Integers

- Suppose we had <u>one byte</u>
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255

252 = 11111100253 = 11111101254 = 1111110255 = 11111111

Unsigned Integers

Suppose we had <u>one byte</u>

- Can represent 2⁸ (256) values
- If unsigned (strictly non-negative): 0 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer "rolls over".

Any time we are dealing with a finite storage space we cannot represent an infinite number of values!

Unsigned Integers

Suppose we had one byte

- Can represent 2⁸ (256) values
- If unsigned (strictly non-negative): 0 255

252 = 11111100

- 253 = 11111101
- 254 = 11111110

255 = 11111111

Modular arithmetic: Here, all values are modulo 256.

Works just like grade school addition

- 1. Add corresponding digits, starting with d₀ digits
- 2. Carry if result is greater than or equal to the base

Let's try (6 + 4) in unsigned binary

$$6 = 0110 \quad (2^3 \times 0 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0)$$

$$4 = 0100 \quad (2^3 \times 0 + 2^2 \times 1 + 2^1 \times 0 + 2^0 \times 0)$$

Works just like grade school addition

- 1. Add corresponding digits, starting with d₀ digits
- 2. Carry if result is greater than or equal to the base

Let's try (6 + 4) in unsigned binary

Works just like grade school addition

- 1. Add corresponding digits, starting with d₀ digits
- 2. Carry if result is greater than or equal to the base

Let's try (6 + 4) in unsigned binary

in binary 1+1 = 10"0 carry the 1" out

• Addition works like grade school addition:

in binary 1+1 = 10
"0 carry the 1" out

Four bits give us range: 0 - 15

Carry out is indicative of something having gone wrong when adding unsigned values

Overflow!

Let's try some more examples (note down if you get a carry out)

in binary 1+1 = 10
"0 carry the 1" out

Carry out is indicative of something having gone wrong when adding unsigned values

Let's try some more examples (note down if you get a carry out)

(0100	4		1111	1	.5
+ ()100 +	4	+	0001	+	1
0	1000	8	1	0000		0!
^nd	o carry	out	^ C	carry	out	

in binary 1+1 = 10"0 carry the 1" out

<u>Carry out is indicative of something having gone wrong when adding unsigned values</u>

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Two's Complement Representation (for four bit values)

For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)

Borrow nice property from number line:

Only one instance of zero! Implies: -1 and 1 on either side of it.

- Addition moves to the right
- Subtraction moves to the left.

Two's Complement

- Only one value for zero
- Adding positive and negative just like unsigned addition

	11111111	(-1)
+	00000001	(1)
	00000000	(0)

- With N bits, can represent the range: -2^{N-1} to $2^{N-1} - 1$
- <u>Most significant</u> (first) bit still designates positive (0) /negative (1)
- Negating a value is slightly more complicated:
 - 1 = 0000001, -1 = 1111111

From now on, unless we explicitly say otherwise, we'll assume all integers are stored using two's complement! This is the standard!

Two's Compliment

Each two's compliment number is now:

 $[-2^{n-1*}d_{n-1}] + [2^{n-2*}d_{n-2}] + ... + [2^{1*}d_1] + [2^{0*}d_0]$

Note the <u>negative sign</u> on just on the higher-order bit. High-order bit is the <u>sign-bit</u>: encodes if number is negative or positive

(The other digits are unchanged and carry the same meaning as unsigned.)

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now: $[-2^{n-1*}d_{n-1}] + [2^{n-2*}d_{n-2}] + ... + [2^{1*}d_{1}] + [2^{0*}d_{n}]$ A. -2 B. -7 C. -9

D. -25

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now: $[-2^{n-1*}d_{n-1}] + [2^{n-2*}d_{n-2}] + ... + [2^{1*}d_1] + [2^{0*}d_0]$ A. -2 B. <u>-7</u> -16 + 8 + 1 = -7

C. -9

D. -25

"If we interpret..."

- What is the decimal value of 1100?
- ...as unsigned, 4-bit value: 12 (%u)
- ...as signed (two's complement), 4-bit value: -4 (%d)
- ...as an 8-bit value: 12
 (i.e., 00001100)

Let's try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit and 8-bit examples:

4 bit numbers (4th bit is the sign bit) 0110 1110

8 bit numbers (8th bit is the sign bit) 00001010 1111111

Let's try some more examples

High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit and 8-bit examples:

4 bit numbers (4th bit is the sign bit) $0110 = -2^3 \times 0 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0 = 6$ $1110 = -2^3 \times 1 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0 = -2$

8 bit numbers (8th bit is the sign bit) $00001010 = -2^{7} \times 0 + 2^{6} \times 0 + 2^{5} \times 0 + 2^{4} \times 0$ $+2^{3} \times 1 + 2^{2} \times 0 + 2^{1} \times 1 + 2^{0} \times 0 = 10$ $11111111 = -2^{7} \times 1 + 2^{6} \times 1 + 2^{5} \times 1 + 2^{4} \times 1$ $+2^{3} \times 1 + 2^{2} \times 1 + 2^{1} \times 1 + 2^{0} \times 1 = -1$

Two's Complement Negation

- To negate a value x, we want to find y such that x + y = 0.
- For N bits, $y = 2^N x$

Negation Example (8 bits)

- For N bits, $y = 2^N x$
- Negate 0000010 (2)
 2⁸ 2 = 256 2 = 254
- Our wheel only goes to 127!
 - Put -2 where 254 would be if wheel was unsigned.
 - 254 in binary is 11111110

Given 1111110, it's 254 if interpreted as <u>unsigned</u> and -2 interpreted as <u>signed</u>.

Negation Shortcut

- A much easier, faster way to negate:
 - Flip the bits (0's become 1's, 1's become 0's)
 - Add 1
- Negate 00101110 (46)
 - $-2^{8} 46 = 256 46 = 210$
 - 210 in binary is 11010010

46:	00101110
Flip the bi	ts: 11010001
Add 1	
<u>+1</u>	
-46:	11010010

Negation Two Ways

4-bit Examples							
х	-X	2 ⁴ - x	Bit flip + 1				
0000	0000	10000 - 0000 = 0000	1111 + 1 = 0000				
0001	1111	10000 - 0001 = 1111	1110 + 1 = 1111				
0010	110	10000 - 0010 = 1110	1101 + 1 = 1110				
0111	1001	10000 - 0111 = 1001	1000 + 1 = 1001				

Decimal to Two's Complement with 8-bit values (high-order bit is the sign bit)

For positive values, use same algorithm as unsigned For example, 6: 6 - 4 = 2 (4:2²) 2 - 2 = 0 (2:2¹): 00000110

For negative values:

- 1. convert the equivalent positive value to binary
- 2. then negate binary to get the negative representation

What is the 8-bit, two's complement representation for -7?

For negative values:

- 1. convert the equivalent positive value to binary
- 2. then negate binary to get the negative representation
- A. 11111001
- B. 00000111
- C. 11111000
- D. 11110011

What is the 8-bit, two's complement representation for -7?

For negative values:

- 1. convert the equivalent positive value to binary
- 2. then negate binary to get the negative representation
- A. 11111001
- B. 00000111
- C. 11111000
- D. 11110011

-7 = (1) 7: 00000111 (2) negate: 11111000 + 1 = 11111001

Additional Info: Fractional binary numbers

How do we represent fractions in binary?

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |

```
8 bits for exponent
```

23 bits for precision

value = $(-1)^{sign} * 1$.fraction * $2^{(exponent-127)}$

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010 sign = 0 exp = 129 fraction = 2902458

 $= 1 \times 1.2902458 \times 2^2 = 5.16098$

You are not expected to memorize this

Summary

- Images, Word Documents, Code, and Video can represented in bits.
- Byte or 8 bits is the smallest addressable unit
- N bits can represent 2^{N} <u>unique</u> values
- A number is written as a sequence of digits: in the decimal base system
 - [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]
 - For any base system:
 - [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]
- Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
 - Each hexadecimal value can be represented by 4 bits. (2^4=16)
- <u>A finite storage space we cannot represent an infinite number of values</u>. For e.g., the max unsigned 8 bit value is 255.
 - Trying to represent a value >255 will result in an overflow.
- Two's Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

Aside: Signed Magnitude Representation (for 4 bit values)

- One bit (usually left-most) signals:
 - 0 for positive
 - 1 for negative

For one byte:

1 = 0000001, -1 = 1000001

Pros: Negation (negative value of a number) is very simple!

For one byte:

0 = 00000000

What about 1000000?

Major con: Two ways to represent zero!