CS31 Worksheet: Week 5: Pointers & Memory Management

Q1. Declare pointers to the following variables:
int main(void){

float y = 10;

double z = 20.2;

return 0;

Given these two setup statements, how many of the following
dereference operations are invalid?

Setup:

int *ptr = &x;

// ptr stores address of int x
char *chptr = &ch;

// chptr stores address of char ch

Dereference operations:
= 6;
= ra.r;
3) int y = + d;
43 ptr = NULL, = 6}

Azl B:2 c:3 D:4

What will this do?

0x0
int main(void) { Operating system
int *ptr; ;::
printf(“®d"”, “ptr); .
} n
it
A. Print 0
B. Print a garbage value Stack
C. Segmentation fault

DxFFFFFFFF

D. Something else

Takeaway: If you're not immediately assigning it something
when you declare it, initialize your pointers to NULL.

Q3. Stack Diagram: Pass by Value
int func(int a, int b) {
a=a+b5;
return a - b; //DRAW STACK BEFORE RETURN
}
int main(void) {

int x, y; // declare two integers

X = 4;
y =7;
y = func(x, y);

printf(“%d, %d”, x, y);

Q4 .Stack Diagram: Pass by Memory Address
void func(int *a) {
= + 5; //DRAW STACK HERE
}

int main(void) {

int x = 4;

func (&x) ;

printf(“%d”, x);

Q5. Stack Diagram: Pass by Memory Address
int main(void){

int x, vy;

Xx =10; y = 20;

foo(&x, y);

}
void foo(int *b, int c){

c = 99

8; //DRAW STACK HERE

Passing Arrays

* An array argument’s value is its base address
* Array parameter “points to” its array argument

int main(void){
int array[10];

} foo(array, 10);
void foo(int arr[]s int n){

arr[2] = 6;
}

What's an alternative way to pass the array from foo to main?

int main(void){
int array[10];

foo (array, 16) : alternative declaration?
, !!Illllllllllll
void foo(& int n){

What should happen if we try to access an address thats NOT

in one of these regions?
Ox0

Dperating system
A. The address is allocated to -
YOUF program.
Data
B. The O5 warns your program. Heap
C. The OS5 kills your program. l
—B0 |
D. The access fails, try the next 3
instruction. |J
E. Something else Stack

OxFFFFFFFF

You're designing a system. What should happen if a
program requests memory and the system doesn’t have
enough available?

The OS kills the requesting program.

The 08 kills another program to make room.
malloc gives it as much memory as is available.
malloc returns NULL.

Something else.

monmrE

What do you expect to happen to the 100-byte chunk if we
do this?

/f What happens to these 100 bytes?
int *ptr = mallac(lﬂ&};l

ptr = malloc(2eee);

A_ The 100-byte chunk will be lost.

B. The 100-byte chunk will be automatically freed (garbage collected) by the O5.
C. The 100-byte chunk will be automatically freed (garbage collected) by C.

0. The 100-byte chunk will be the first 100 bytes of the 2000-byte chunk.

E. The 100-byte chunk will be added to the 2000-byte chunk {2100 bytes total).

Why doesn't C do garbage collection?
A. It's impossible in C.
B. It requires a lot of resources.
C. It might not be safe to do so. (break programs)
D. It hadn't been invented at the time C was developed.

E. Some other reason.

What's wrong with the following code assuming main calls copy_array?
Draw out the stack diagram after copy_array executes to see the
error. Can you return the array?

copy_array(int array[]) {
int result[5];

result[@] = array[0];

copy_array: | result ==]
result[4] = array[4]; E
return result; E
} .
main:
(In main): cmw:[:]

copy = copy_array(..)

	CS31 Worksheet: Week 5: Pointers & Memory Management

