THE PROBABILISTIC METHOD WEEK 3: ASYMPTOTIC ANALYSIS, COMMON FUNCTIONS

JOSHUA BRODY CS49/MATH59 FALL 2015

Let f(n) = O(g(n)) such that $g(n) = \omega(1)$. Which of the following statements must hold?

(A) $\log(f(n)) = O(\log(g(n)))$

(B) f(n) = O(g(n))

(C) $2^{f(n)} = O(2^{g(n)})$

(D)(A) and (B)

(E) (B) and (C)

Let f(n) = O(g(n)) such that $g(n) = \omega(1)$. Which of the following statements must hold?

(A) log(f(n)) = O(log(g(n)))
(B) f(n) = O(g(n))
(C) 2^{f(n)} = O(2^{g(n)})
(D) (A) and (B)
(E) (B) and (C)

LOG, EXPONENT RULES

Facts: Let **f**, **g** be functions such that f = O(g). Then, the following must hold:

(1) Polynomial Rule. $f^{k} = O(g^{k})$ for any integer k > I.

(2)Log Rule. If $g(n) = \omega(I)$ then

log(f(n)) = O(log(g(n)))

(3) Exponential Rule. If $g(n) = f(n) + \omega(1)$, then

 $2^{f(n)} = o(2^{g(n)})$

POLYNOMIALS

LOGARITHMS

LOGARITHMS VS POLYNOMIALS

LOGARITHMS VS POLYNOMIALS

LOGARITHMS VS POLYNOMIALS

Let **I** < **s** < **r**. Let **f(n)** = **r**ⁿ and **g(n)** = **s**ⁿ. What is the most accurate comparison for **f(n)** vs **g(n)**?

(A) f = O(g)(B) $f = \Omega(g)$ (C) $f = \Theta(g)$ (D) f = o(g)(E) $f = \omega(g)$

Let **I** < **s** < **r**. Let **f(n)** = **r**ⁿ and **g(n)** = **s**ⁿ. What is the most accurate comparison for **f(n)** vs **g(n)**?

(A) f = O(g)(B) $f = \Omega(g)$ (C) $f = \Theta(g)$ (D) f = o(g)(E) $f = \omega(g)$

EXPONENTIALS

EXPONENTIALS

THE PROBABILISTIC METHOD

