ThE PROBABILISTIC METHOD

WEEK 3: ASYMPTOTIC ANALYSIS, COMMON FUNCTIONS

JOSHUA BRODY CS49/MATH59

FALL 2015

CLICKER QUESTION

Let $f(n)=\mathbf{O}(g(n))$ such that $g(n)=\omega(I)$. Which of the following statements must hold?
(A) $\log (f(n))=\mathbf{O}(\log (g(n)))$
(B) $\mathbf{f}(\mathrm{n})=\mathbf{O}(\mathrm{g}(\mathrm{n}))$
(C) $2^{f(n)}=O\left(\mathbf{2}^{g(n)}\right)$
(D) (A) and (B)
(E) (B) and (C)

CLICKER QUESTION

Let $f(n)=\mathbf{O}(g(n))$ such that $g(n)=\omega(I)$. Which of the following statements must hold?
(A) $\log (f(n))=\mathbf{O}(\log (g(n)))$
(B) $\mathbf{f}(\mathbf{n})=\mathbf{O}(\mathbf{g}(\mathbf{n}))$
(C) $\left.\mathbf{2}^{\mathrm{f}(\mathrm{n})}=\mathbf{O} \mathbf{(2 g}^{\mathrm{g}(\mathrm{n})}\right)$
(D) (A) and (B)
(E) (B) and (C)

LOG, EXPONENT RULES

Facts: Let \mathbf{f}, \mathbf{g} be functions such that $\mathbf{f}=\mathbf{O}(\mathbf{g})$.
Then, the following must hold:
(1)Polynomial Rule. $\mathbf{f}^{\mathbf{k}}=\mathbf{O}\left(\mathbf{g}^{\mathbf{k}}\right)$ for any integer $\mathbf{k}>\mathbf{I}$.
(2) Log Rule. If $\mathbf{g}(\mathbf{n})=\boldsymbol{\omega}(\mathbf{I})$ then

$$
\log (f(n))=O(\log (g(n)))
$$

(3) Exponential Rule. If $\mathbf{g}(\mathbf{n})=\mathbf{f}(\mathbf{n})+\boldsymbol{w}(\mathbf{I})$, then

$$
2^{f(n)}=o\left(2^{g(n)}\right)
$$

POLYNOMIALS

LOGARITHMS

LOGARITHMS VS POLYNOMIALS

LOGARITHMS VS POLYNOMIALS

LOGARITHMS VS POLYNOMIALS

CLICKER QUESTION

Let $\boldsymbol{I}<\boldsymbol{s}<\boldsymbol{r}$. Let $\mathbf{f}(\mathbf{n})=\boldsymbol{r}^{\mathbf{n}}$ and $\boldsymbol{g}(\mathbf{n})=\boldsymbol{s}^{\mathbf{n}}$. What is the most accurate comparison for $f(n)$ vs $g(n)$?
$(\mathrm{A}) \mathrm{f}=\mathbf{O}(\mathrm{g})$
(B) $\mathrm{f}=\Omega(\mathrm{g})$
(C) $f=\theta(g)$
(D) $\mathrm{f}=\mathrm{o}$ (g)
(E) $\mathbf{f}=\omega(\mathrm{g})$

CLICKER QUESTION

Let $\boldsymbol{I}<\boldsymbol{s}<\mathbf{r}$. Let $\mathbf{f}(\mathbf{n})=\mathbf{r}^{\mathbf{n}}$ and $\mathbf{g}(\mathbf{n})=\boldsymbol{s}^{\mathbf{n}}$. What is the most accurate comparison for $f(n)$ vs $g(n)$?
$(\mathrm{A}) \mathrm{f}=\mathbf{O}(\mathrm{g})$
(B) $\mathrm{f}=\Omega(\mathrm{g})$
(C) $\mathrm{f}=\boldsymbol{\theta}(\mathrm{g})$
(D) $f=0(g)$
(E) $f=\omega(g)$

EXPONENTIALS

EXPONENTIALS

THE PROBABILISTIC METHOD

