THE PROBABILISTIC METHOD

WEEK 2: INDEPENDENCE, RANDOM VARIABLES, ASYMPTOPIA

Joshua Brody CS49/MATH59

FALL 2015

CLICKER QUESTION

Suppose that $f(n)=n^{\mathbf{2}} / 10$ and $g(n)=100 n$. Which of the following hold?
(A) $f(n)=O(g(n))$
(B) $\mathbf{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$
(C) $f(n)=\Theta(g(n))$
(D) A and B
(E) B and C

CLICKER QUESTION

Suppose that $f(n)=n^{\mathbf{2}} / \mathbf{1 0}$ and $g(n)=100 n$. Which of the following hold?
(A) $\mathbf{f}(\mathrm{n})=\mathbf{O}(\mathrm{g}(\mathrm{n}))$
(B) $f(n)=\Omega(g(n))$
(C) $f(n)=\Theta(g(n))$
(D) A and B
(E) B and C

CLICKER QUESTION

Let $f(n)=n^{2} / 10, g(n)=100 n$, and $h(n)=n / \log (n)$.
Order $\mathrm{f}, \mathrm{g}, \mathrm{h}$ in increasing rates of growth.
(A) f, h, g
(B) f, g, h
(C) g, f, h
(D) g, h, f
(E) h, g, f

CLICKER QUESTION

Let $f(n)=n^{2} / 10, g(n)=100 n$, and $h(n)=n / \log (n)$.
Order f,g,h in increasing rates of growth.
(A) f, h, g
(B) f, g, h
(C) g, f, h
(D) g, h, f
(E) h, g, f

Asymptotic Notation

- $\mathbf{f}(\mathrm{n})=\mathbf{O}(\mathrm{g}(\mathrm{n}))$ if there exists constants $\mathrm{c}, \mathrm{n}_{0}>0$ such that for all $\mathbf{n} \geq \mathbf{n}_{\mathbf{0}}$,

$$
f(n) \leq \operatorname{cg}(n)
$$

- $f(n)=\Omega(g(n))$ if there exists constants $c, n_{0}>0$ such that for all $\mathbf{n} \geq \mathbf{n}_{\mathbf{0}}$,

$$
f(n) \geq \operatorname{cg}(n)
$$

- $\mathbf{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if there are constants $\mathbf{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{\mathbf{0}}>\mathbf{0}$ such that for all $\mathbf{n} \geq \mathbf{n}_{0}$,

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

Asymptotic Notation

Asymptotic Notation

- $\mathbf{f}(\mathrm{n})=\mathbf{O}(\mathrm{g}(\mathrm{n}))$ if there exists constants $\mathrm{c}, \mathrm{n}_{0}>0$ such that for all $\mathbf{n} \geq \mathbf{n}_{\mathbf{0}}$,

$$
f(n) \leq \operatorname{cg}(n)
$$

- $f(n)=\Omega(g(n))$ if there exists constants $c, n_{0}>0$ such that for all $\mathbf{n} \geq \mathbf{n}_{\mathbf{0}}$,

$$
f(n) \geq \operatorname{cg}(n)
$$

- $\mathbf{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if there are constants $\mathbf{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{\mathbf{0}}>\mathbf{0}$ such that for all $\mathbf{n} \geq \mathbf{n}_{0}$,

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

CLICKER QUESTION

Let $f(n)=15 n+3$, and $g(n)=n^{2} / I 0$.
Which values for ($\mathbf{c}, \mathrm{n}_{\mathbf{0}}$) would be valid choices for showing $f=O(g)$?
(A) $\left(\mathrm{c}, \mathrm{n}_{0}\right)=(\mathrm{I} 0,-\mathrm{I})$
(B) $\left(\mathbf{c}, \mathrm{n}_{0}\right)=(1,10)$
(C) $\left(c, n_{0}\right)=(4,4)$
(D) $\left(\mathrm{c}, \mathrm{n}_{0}\right)=(60,3)$
(E) $\left(\mathrm{c}, \mathrm{n}_{0}\right)=(100, \mathrm{I})$

CLICKER QUESTION

Let $f(n)=15 n+3$, and $g(n)=n^{2} / 10$.
Which values for ($\mathbf{c}, \mathrm{n}_{\mathbf{0}}$) would be valid choices for showing $\mathrm{f}=\mathbf{O}(\mathrm{g})$?
(A) $\left(\mathrm{c}, \mathrm{n}_{0}\right)=(\mathrm{I} 0,-\mathrm{I})$
(B) $\left(\mathrm{c}, \mathrm{n}_{\mathbf{0}}\right)=(1,10)$
(C) $\left(\mathrm{c}, \mathrm{n}_{0}\right)=(4,4)$
(D) $\left(c, n_{0}\right)=(60,3)$
(E) $\left(c, n_{0}\right)=(100,1)$

Asymptotic Notation

Alternate Facts/ DEFINITIONS

Facts:
(1) $f(n)=\Theta(g(n))$ iff $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
(2) $f(n)=o(g(n))$ iff $f(n)=O(g(n))$ but not $f(n)=\Omega(g(n))$
(3) $f(n)=w(g(n))$ iff $f(n)=\Omega(g(n))$ but not $f(n)=O(g(n))$

Limit-based definitions: if $\lim _{n \rightarrow \infty} f(n) / g(n)$ exists:
(1) $f(n)=\Theta(g(n))$ iff $\lim _{n \rightarrow \infty} f(n) / g(n)=c$ for some $c>0$
(2) $f(n)=o(g(n))$ iff $\lim _{n \rightarrow \infty} f(n) / g(n)=0$
(3) $f(n)=w(g(n))$ iff $\lim _{n \rightarrow \infty} f(n) / g(n)=\infty$
(4) $f \sim g$ iff $\lim _{n \rightarrow \infty} f(n) / g(n)=1$

THE PROBABILISTIC METHOD

