THE PROBABILISTIC METHOD

WEEK 1: INTRODUCTION TO PROBABILITY THEORY

JOSHUA BRODY CS49/MATH59

FALL 2015

CLICKER QUESTION

Let \mathbf{P} be uniform on $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{1} \mathbf{0}\}$.
Let $\mathbf{A}=\{\mathbf{2 , 3 , 5 , 7 \}}$ and $\mathbf{B}=\{1, \mathbf{3}, \mathbf{5}, \mathbf{7}, \mathbf{9}\}$.
What is $\mathbf{P}[\mathbf{A} \mid \mathbf{B}]$?
(A) $2 / 5$
(B) $1 / 2$
(C) $3 / 5$
(D) $3 / 4$

CLICKER QUESTION

Let \mathbf{P} be uniform on $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{1} \mathbf{0}\}$.
Let $\mathbf{A}=\{\mathbf{2 , 3 , 5 , 7 \}}$ and $\mathbf{B}=\{1, \mathbf{3}, \mathbf{5}, \mathbf{7}, \mathbf{9}\}$.
What is $\mathbf{P}[\mathbf{A} \mid \mathbf{B}]$?
(A) $2 / 5$
(B) $1 / 2$
(C) $3 / 5$
(D) $3 / 4$

CONDITIONAL PROBABILITY

For $\mathbf{B} \subseteq \Omega$ and $\mathbf{w} \in \Omega$, the probability of w conditioned on B is

$$
P(w \mid B)=\begin{array}{ll}
P(w) / P(B) & \text { if } w \in B \\
0 & \text { otherwise }
\end{array}
$$

Given event $\mathbf{A} \subseteq \Omega$, the probability of \mathbf{A} conditioned on \mathbf{B} is

$$
P(A \mid B)=\Sigma P(w \mid B)
$$

CLICKER EXERCISE

Patients enter a medical clinic when they feel ill. 5\% of patients who come in have cancer, and 20% are smokers. By checking records of cancer patients, we know that 50% of cancer patients are smokers.

Suppose a patient enters and is a smoker. What is the probability the patient has cancer?
(A) 5%
(B) 12.5%
(C) 20%
(D) 50%.

INDEPENDENT EVENTS

THE PROBABILISTIC METHOD

