THE PROBABILISTIC METHOD

WEEK 1: INTRODUCTION TO PROBABILITY THEORY

JOSHUA BRODY CS49/MATH59 FALL 2015

CLICKER QUESTION

What is a probability distribution?

- (A) A probability distribution is a random variable.
- **(B)** A probability distribution is a function.
- (C) A probability distribution is an event.
- **(D)** None of the above.

CLICKER QUESTION

What is a probability distribution?

(A) A probability distribution is a random variable.

(B) A probability distribution is a function.

(C) A probability distribution is an event.

(D) None of the above.

PROBABILITY DISTRIBUTIONS

Let Ω be a finite, non-empty set. A probability distribution on Ω is a function **P**: $\Omega \rightarrow \{0, I\}$ such that

Σ P(w) = **I** w ∈ Ω

- Ω : <u>sample space</u> of **P**
- <u>support</u> of **P: {w : P(w) > 0**}

CLICKER QUESTION

binomial distribution: flip a coin n times and count # heads.
What is Pr[k]?

- (A) $\Pr[k] = 1/n$.
- (B) $\Pr[k] = k/n$.
- (C) **Pr[k]** = $\binom{n}{k}$ /2ⁿ
- (D) $\Pr[k] = k^2/2^n$.

EVENTS

EVENTS

EXAMPLE PROBLEM

Arithmetic Sequence:

list of numbers (a₁, a₂, ..., a_m) where a_i = a_{i-1} + k for some k examples: (1, 5, 9, 13), (201, 402, 603, 804, 1005)

Problem: show how to color numbers **{1, 2, 3, 4, ..., 2015}** using 4 colors so that no arithmetic sequence is *monochromatic*

Solution: color each number **I**, **2**, **...**, **2015** *randomly*.

THE PROBABILISTIC METHOD

