THE PROBABILISTIC METHOD

WEEK 1: INTRODUCTION TO PROBABILITY THEORY

JOSHUA BRODY CS49/MATH59

FALL 2015

CLICKER QUESTION

What is a probability distribution?

(A) A probability distribution is a random variable.
(B) A probability distribution is a function.
(C) A probability distribution is an event.
(D) None of the above.

CLICKER QUESTION

What is a probability distribution?
(A) A probability distribution is a random variable.
(B) A probability distribution is a function.
(C) A probability distribution is an event.
(D) None of the above.

PROBABILITY DISTRIBUTIONS

Let Ω be a finite, non-empty set. A probability distribution on Ω is a function $\mathbf{P}: \Omega \rightarrow\{\mathbf{0}, \mathrm{I}\}$ such that

$$
\sum_{\mathbf{w} \in \Omega} \mathbf{P}(\mathbf{w})=\mathbf{I}
$$

- Ω : sample space of \mathbf{P}
- support of $\mathbf{P}:\{\mathbf{f}: \mathbf{P}(w)>0\}$

CLICKER QUESTION

binomial distribution: flip a coin n times and count \# heads.
What is $\operatorname{Pr}[\mathbf{k}]$?
(A) $\operatorname{Pr}[\mathrm{k}]=\mathrm{I} / \mathrm{n}$.
(B) $\operatorname{Pr}[k]=k / n$.
(C) $\operatorname{Pr}[k]=\binom{n}{k} / 2^{n}$
(D) $\operatorname{Pr}[k]=\mathbf{k}^{2} / 2^{\mathrm{n}}$.

Events

Events

ExAMPLE Problem

Arithmetic Sequence:

$$
\begin{aligned}
& \text { list of numbers }\left(\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{m}}\right) \text { where } \mathbf{a}_{\mathbf{i}}=\mathbf{a}_{\mathbf{i - 1}}+\mathbf{k} \text { for some } \mathbf{k} \\
& \text { examples: }(\mathbf{1}, \mathbf{5}, \mathbf{9}, \mathbf{1 3} \mathbf{3}),(\mathbf{2 0 1}, \mathbf{4 0 2}, \mathbf{6 0 3}, \mathbf{8 0 4}, \mathbf{1 0 0 5})
\end{aligned}
$$

Problem: show how to color numbers $\{\mathbf{I}, \mathbf{2 , 3 , 4 , \ldots , 2 0 | 5 \}}$ using 4 colors so that no arithmetic sequence is monochromatic

Solution: color each number I, 2, ..., 2015 randomly.

THE PROBABILISTIC METHOD

