Asymptotic Properties

This document enumerates several of the asymptotic properties we've seen in class this semester.

Relational Properties. We saw analogies between asymptotic comparisons between two functions f, g and the comparisons between two reals x, y. The analogies are as follows:

- f = O(g) is similar to $x \le y$
- $f = \Omega(g)$ is similar to $x \ge y$
- $f = \Theta(g)$ is similar to x = y
- f = o(g) is similar to x < y
- $f = \omega(g)$ is similar to x > y

We derived many properties that chained together asymptotic relationships by appealing to this metaphor. The ones we saw in class are listed below:

- 1. If f = O(g) and g = O(h) then f = O(h).
- 2. If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- 3. If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.
- 4. If f = o(g) and g = o(h) then f = o(h).
- 5. If $f = \omega(g)$ and $g = \omega(h)$ then $f = \omega(h)$.

The facts above all demonstrate the *transitivity* of asymptotic notation. It's also possible to derive transitive properties that mix different asymptotic relationships. Examples we saw in class include

- 6. If f = O(g) and g = o(h) then f = o(h).
- 7. If f = o(g) and g = O(h) then f = o(h).

It is easy to generate new properties in this way, by appealing to the analogy w/real numbers. e.g. we know that if x < y and y = z, we must have x < z. In the same way, we get:

8. If f = o(g) and $g = \Theta(h)$ then f = o(h).

It's important to understand that we don't *automatically* get these properties just because they hold for real numbers. For example, one relational property that applies to reals but not asymptotic functions is *tricotomy*:

Fact. For every $x, y \in \mathbb{R}$, either x < y, x = y, or x > y.

It is **not** true that either f = o(g), $f = \Theta(g)$, or $f = \omega(g)$. In summary, while the analogy is intuitive and goes along way, always remember that we proved these properties using first principles.

Combining Functions

- 9. If f = O(h) and g = O(h) then f + g = O(h).
- 10. For any constant integer k > 0, $f_1 + \cdots + f_k = O(k)$.
- 11. If $f_1 = O(g_1)$ and $f_2 = O(g_2)$ then $f_1 + f_2 = O(g_1 + g_2)$.
- 12. **Product Rule.** If $f_1 = O(g_1)$ and $f_2 = O(g_2)$ then $f_1 f_2 = O(g_1 g_2)$.

Log,Polynomial, Exponent Rules Let f, g be functions such that f = O(g).

- 13. Polynomial Rule. For any constant integer k > 0, $f^k = O(g^k)$.
- 14. Log Rule. If $g = \omega(1)$ then $\log(f(n)) = O(\log(g(n)))$.
- 15. Exponent Rule. If $g(n) = f(n) + \omega(1)$, then $2^{f(n)} = O(2^{g(n)})$.

Comparing Polynomials, Logarithmic, and Exponential Functions. The most common functions we'll see in this class (and in computer science in general) are polynomial, logarithmic, or exponential functions.

- A polynomial function is a function of the form e.g. $f(n) = a_d n^d + a_{d-1} n^{d-1} + \cdots + a_1 n + a_0$. The degree of this function is d, i.e. the largest exponent of any term. In this class, we'll always assume that the coefficient of the largest term is positive, e.g., $a_d > 0$.
- A logarithmic functions is of the form $f(n) = \log_b(n)$.
- An exponential function is of the form $f(n) = r^n$ for some r.

In class, we derived properties for comparing different polynomial functions, different logarithmic functions, and different exponential functions:

- 16. If f, g are polynomials of the same degree then $f = \Theta(g)$.
- 17. If $f = n^a$ and $g = n^b$ for constants b > a then f = o(g).
- 18. If $f = \log_a(n)$ and $g = \log_b(n)$ for constants a, b > 1 then $f = \Theta(g)$.
- 19. If $f = r^n$ and $g = s^n$ for constants r > s > 1, then $f = \omega(g)$.

Finally, we saw different rules for comparing polynomials vs logarithmic functions and polynomial vs exponential functions:

- 20. $n^k = O(2^n)$ for any k > 0.
- 21. $\log(n) = O(n^{\epsilon})$ for any $\epsilon > 0$.

We also discussed that in fact, property 21 can be tightened:

Lemma 1. For any $\epsilon > 0$, $\log(n) = o(n^{\epsilon})$.

This development in class was impromptu and not polished. I promised a ${\rm IAT}_{\rm E}{\rm X}{\rm 'd}$ proof, which lies below.

Proof. Fix any $\epsilon > 0$, and define $\epsilon' := \epsilon/2$. Then, $\epsilon' > 0$ as well, so we know $\log n = O(n^{\epsilon'})$. By the product rule, we get $(\log(n)^2) = O((n^{\epsilon'})^2) = O(n^{\epsilon})$. From property 17 (setting $N := \log(n)$), we get $\log(n) = o((\log n)^2)$. So, we have

$$\log(n) = o((\log(n))^2)$$
, and $(\log(n))^2 = O(n^{\epsilon})$.

By property 7, we get $\log(n) = o(n^{\epsilon})$.