
Joshua Brody

CS35X: Competitive
Programming
Lecture 7: Stacks, Queues, Graphs

Warmup Kattis Problem:
relocation

Problem debrief:
trianglesofasquare

Stack, Queue ADTs
• Maintain ordered collection of items.

• Main Stack Operations:

• push(foo) — add foo to top of stack

• pop() — remove top element of stack

• Items accessed in LIFO order

• Main Queue Operations:

• enqueue(foo) — add foo to back of Queue

• dequeue() — remove element from front of queue

• Items accessed in FIFO order.

• Other Stack/Queue operation(s): isEmpty(), getSize()
• Interfaces are simple. Operations should be fast — O(1)!

STL deque class
• Double-ended queue — add/remove items from front or back.
• #include <deque> // include pair library

• deque<string> d; // d is deque of strings

• deque<int> q = {3,2,6}; // direct initialization

• q.push_front(8); // q is now [8,3,2,6]

• q.push_back(9); // q is now [8,3,2,6,9]

• q.pop_front(); // q is now [3,2,6,9]

• q.pop_back(); // q is now [3,2,6]

• q.front(); // returns 3

• q.back(); // returns 6

• q.empty(); // returns false (q not empty)

Implementation Details
• Deque (double-ended queues) built like circular ArrayLists.

• Adding/removing to front/end of deque is O(1) in practice.

• pop_front, pop_back don’t return the element.

Stack/Queue application: Graphs
• A graph G = (V,E) is a set of vertices V along with a set of edges E.

• Graphs represent binary relationships.

• Map: vertices == towns, edges == roads

• Social network: vertices == users, edges == friendships

• Temporal network: vertices == events, edge (u,v): u happens before v.

• There are many interesting algorithms we can do on graphs

Graph Representation: Adjacency Lists
• Say graph has n vertices 0,…, n-1.

• Represent graph g as array of vector<int>:

• g[i]: vector of neighbors of i.

A first Graph algorithm: BFS
• Visit all nodes in graph, using queue to manage exploration
• deque<int> q;

• q.push_back(s);

• visited[s] = true;

• while(!q.empty()) {

• v = q[0];

• q.pop_front();

• for(int i=0; i<g[v].size(); i++) {

• u = g[v][i];

• if(! visited[u]) {

• // visit u

• q.push_back(u);

• }

• }

• }

Things we can do with BFS:
• Are all vertices connected?

• Find shortest length path from s—>t.

• Identify vertices reachable from s.

• Count # connected components of graph

• …

Graph Implementation tips
• Represent vertices of graph as integers.

• Adjacency List can be dictionary instead of array, but huge time penalty.

• Adjacency List can store:

• Vertex neighbors

• Edges out of a vertex

• Create a helper function that loads graph into an adj list

• Consider defining a class to represent weighted edges.

• String vertices:

• Store Dictionary mapping integers to (string) vertex label

• Run graph algorithm on graph using int vertices

• Use dictionary to recover vertex names if needed

Kattis Problem:
onaveragetheyrepurple

