
Joshua Brody

CS35X: Competitive
Programming
Lecture 7: Math

Warmup Kattis Problem:
Missing number

Problem debrief: orphan
backups

Math Problems in Competitive Programming
Many problems in competitive programming are mathematical. Some
involve making clever observations, some involve recalling little-used
mathematical algorithms. Some are common though.

CS35x goals for mathematical problems:

• Handle large integers

• Compute prime numbers

• generate factors of a number

C++ large integers, modular arithmetic
• Some problems ask you to work with numbers with thousands of digits

• Often you’ll need to print the number modulo some large prime.

• e.g. Print the number of solutions to [this problem] modulo 998244353.

• In C++ always use long long for these problems.

• Always take intermediate results mod the large prime.

• Note: in C++ the mod operator (%) doesn’t work the way you’d expect

on negative numbers: -5 % 3 == -2

Example: read array of N elements, compute product
const int MOD = 1000000007;

int N; cin >> N;

long long prod = 1;

for(int i=0; i<N; i++) {

long long X; cin >> X;

prod = (prod*X) % MOD;

}

cout << prod << endl;

Prime Factorization
The most straightforward way to factor a number n is to perform trial divisions up to sqrt(N):

vector<int> factor(int N) {

 vector<int> result;

 for(int i=2; i<sqrt(N); +1 && i<N; i++) {

 while(N%i ==0) {

result.push_back(i);

}

 }

 if(N>1) {

 result.push_back(N);

 }

return result;

}

Generate all primes
The classic way: Sieve of Eratosthenes

This runs in O(nlog(log(n))) time

Faster Prime Generation: Euler Sieve
vector<int> lpf; // lpf[i] stores least prime factor of i

vector<int> primes;

void computePrimes(int N) {

 lpf = vector<int>(N+1);

 for(int i=2; i<=N; i++) {

 if(lpf[i]==0) {

 lpf[i] = i; primes.push_back(i); // found a new prime!

 }

 for(int j=0; i*primes[j]<=N; j++) {

 lpf[i*primes[j]] = primes[j];

 if(primes[j] == lpf[I]) {

 break;

} } } }

This runs in O(n) time

Faster Prime Factorization
With Euler Sieve, it is easy to prime factorize a number

Vector<int> factor(int N) {

 Vector<int> result;

 while(N!=1) {

 Result.push_back(lpf[N]);

 N = N/lpf[N];

 }

 Return N;

}

Compact Prime Factorization
• For some problems, you’ll need to iterate over all factors of a number, not

just all prime factors.

• One solution: enumerate over subsets of prime factorization

• This can be inefficient if primes are repeated

• Compact prime factorization:

• List of [p,e] pairs, where p^e divides N.

Exercise:
Read in a list of primes from cin,

Produce compact prime list.
Ex input: [2,2,2,3,5,5,19]

Output: [[2,3],[3,1],[5,2],[19,1]]

Kattis Problem: popkorn

