
Joshua Brody

CS35X: Competitive
Programming
Lecture 5: Debugging

Quiz 1

Contest Strategies
• Identify Easy Problems
• Practice identifying which problems are easiest

• Solve easy problems fast.

• Ignore harder problems unless your goal is to solve everything

• Upsolving Problems
• Technical Resource Document (TRD)
• Printout of notes about different data structures, algorithms

• Good for obscure, not-often-used algorithms you’ve already

implemented.

Debugging Strategies
Before Submitting
• At a minimum, make sure your program compiles, runs on sample

inputs.

• Perform sanity checks:

• Does program work on minimal inputs e.g. n==0, n==1?

• Does program use all of given input?

• Have you removed all debugging print statements?

• (C++ integers): does your answer fit inside int or long long?

• Is the output formatted correctly? (reread output spec)

Debugging Strategies
Before Submitting
• Compile/test your program locally.

• g++ -std=c++17 -o solution solution.cpp

• ./solution

• Redirect input/output

• ./solution < in.txt > out.txt

Debugging Strategies By Verdict
Wrong Answer (WA)
• WAs are very common and hard to debug :(

• Can be useful to try to identify type of bug

• Optimization Problems: program found suboptimal solution or a

solution that was too good to be true

• Counting Problems: program over- or under-counted the answer

• Constructive Problems: program failed to find a construction

where one existed, or provided incorrect construction

• Bugs can be generally classified as errors in implementation or in

reasoning.

Debugging Strategies By Verdict
Time Limit Exceeded (TLE) — there are two main reasons for TLEs:
• Incorrect asymptotic complexity

• Program’s runtime has poor constant factor

• Data structures like map or set have high constant factor

• C++ printing a lot of output can be slow.

• Make sure you’re using ‘\n' instead of endl.

• Generate a large sample input and time your code running on it.

Stress Testing
• After getting a WA result, write two programs:

• A slow solution you know is correct (e.g. brute force)

• A program that prints random (small!) test cases

• Then, use the program to generate several test cases, and run both
your WA and the slow solution to compare differences

• Power Stress Testing: write a shell script to automate process.

In class exercise:
examples/debugging/oatp/oatp.cpp,

oatp2.cpp

