CS35X: Competitive
Programming




Warmup Kattis Problem:
reduplikation




Problem debrief: icoudlhavewon



Git repo configuration



STL pair class

 maintain two things at once!

e #}include <pair> // include pair library

e pair<string,int> foo; // create pair object

e foo.first = “hello!”; // set first item to “hello!”
e foo.second = 17; // set second item to 17;

e pair<int, string> bar(44,”science”); // direct initialization



Dictionary ADT

* Maintain collection of (key, value) pairs.
» Support the following operations:
* |nitialize an empty dictionary.
* Insert a new (key, value) pair.
* (Given a key, update its value.
* (Given a key, get and return its value.
* Check to see if a key is present in the dictionary.
* Remove a (key, value) pair from dictionary.
 CS35 implementations: BST (weeks 7-8), Hash Table (week 10)



Example Syntax

#include <map>
map<string,int> my dict;
my dict[%a”] = 1;

my dict[%a”] = 2;

int a val

if (my dict.count("b”)) {
my dict["b"] +=2;

}

my dict.erase(“a”);

my dict[“a”];

//
//
//
//
//

//

create empty dictionary

insert (%“a”,1l) into my dict
update value of “a” to 2

use array-like syntax to get values!

returns 1 i1f “b” in dictionary; 0 otherwise.

delete (key,value) pair associated with “a

for (const auto &mypair:my dict) { // iterate over (key,value pairs)

cout << my pair.first << end;



Implementation Details

Definitely use the builtin dictionaries!

Dictionaries can be implemented by a hash map or a binary search tree.
Hashmap aka hash table:

* Works by assigning each key to an array index based on a hash function.
* O(1) time operations in practice.

e C++ STL class: unordered map

Binary Search Tree aka BST:

* Arranges keys in a tree according to some ordering.

* O(log n) time operations for balanced BSTs.

« C++ STL class: map

BSTs support predecessor and successor OpS.
In practice both classes have fast ops. For ICPC problems map sometimes faster.



Exercise:
read fish from file,
maintain count of frequencies




Kattis Problem: oddmanout



