
Additional Material

Adam J. Aviv
Ph.D. Candidate
University of Pennsylvania

• Adam J. Aviv, Katherine Gibson, Evan Mossop, Matthew Blaze, and Jonathan M. Smith.
Smudge Attacks on Smartphone Touchscreens. In 4th Usenix Workshop on Offensive Techno-
gies (WOOT), 2010.

• Adam J. Aviv, Matt Blaze, Jonathan M. Smith, and Micah Sherr. Privacy-Aware Mes-
sage Exchanges for Geographically Routed Human Movement Networks . Under Submission,
Submitted November 2012.

• Adam Aviv, Vin Mannino, Thanat Olwlar, Seth Shannin, and Kevin Xu. PennOS: UNIX-like
Operating System Simulation. CIS-380 Operating Systems Course Project.

Smudge Attacks on Smartphone Touch Screens

Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith
Department of Computer and Information Science – University of Pennsylvania

{aviv,gibsonk,emossop,blaze,jms}@cis.upenn.edu

Abstract
Touch screens are an increasingly common feature on
personal computing devices, especially smartphones,
where size and user interface advantages accrue from
consolidating multiple hardware components (keyboard,
number pad, etc.) into a single software definable user
interface. Oily residues, or smudges, on the touch screen
surface, are one side effect of touches from which fre-
quently used patterns such as a graphical password might
be inferred.

In this paper we examine the feasibility of such smudge
attacks on touch screens for smartphones, and focus our
analysis on the Android password pattern. We first in-
vestigate the conditions (e.g., lighting and camera orien-
tation) under which smudges are easily extracted. In the
vast majority of settings, partial or complete patterns are
easily retrieved. We also emulate usage situations that in-
terfere with pattern identification, and show that pattern
smudges continue to be recognizable. Finally, we pro-
vide a preliminary analysis of applying the information
learned in a smudge attack to guessing an Android pass-
word pattern.

1 Introduction
Personal computing devices now commonly use touch
screen inputs with application-defined interactions that
provide a more intuitive experience than hardware key-
boards or number pads. Touch screens are touched, so
oily residues, or smudges, remain on the screen as a side
effect. Latent smudges may be usable to infer recently
and frequently touched areas of the screen – a form of
information leakage.

This paper explores the feasibility of smudge attacks,
where an attacker, by inspection of smudges, attempts to
extract sensitive information about recent user input. We
provide initial analysis of the capabilities of an attacker
who wishes to execute a smudge attack. While this anal-
ysis is restricted to smartphone touch screens, specifically
attacks against the Android password pattern, smudge at-
tacks may apply to a significantly larger set of devices,
ranging from touch screen ATMs and DRE voting ma-
chines to touch screen PIN entry systems in convenience
stores.

We believe smudge attacks are a threat for three rea-
sons. First, smudges are surprisingly1 persistent in time.
Second, it is surprisingly difficult to incidentally ob-
scure or delete smudges through wiping or pocketing
the device. Third and finally, collecting and analyzing
oily residue smudges can be done with readily-available
equipment such as a camera and a computer2.

To explore the feasibility of smudge attacks against the
Android password pattern, our analysis begins by eval-
uating the conditions by which smudges can be photo-
graphically extracted from smartphone touch screen sur-
faces. We consider a variety of lighting angles and light
sources as well as various camera angles with respect to
the orientation of the phone. Our results are extremely
encouraging: in one experiment, the pattern was partially
identifiable in 92% and fully in 68% of the tested lighting
and camera setups. Even in our worst performing exper-
iment, under less than ideal pattern entry conditions, the
pattern can be partially extracted in 37% of the setups and
fully in 14% of them.

We also consider simulated user usage scenarios based
on expected applications, such as making a phone call,
and if the pattern entry occurred prior to or post appli-
cation usage. Even still, partial or complete patterns are
easily extracted. We also consider incidental contact with
clothing, such as the phone being placed in a pocket; in-
formation about the pattern can still be retrieved. Finally,
we provide preliminary analysis of applying a smudge
attack to the Android password pattern and how the in-
formation learned can be used to guess likely passwords.

Next, in Sec. 2, we provide our threat model, followed
by background on the Android password pattern in Sec. 3.
Our experimental setup is presented in Sec. 4, including
a primer on lighting and photography. Experimental re-
sults are presented in Sec. 5, and a discussion of applying
a smudge attack to the Android pattern password is pre-
sented in Sec. 6. Related work is provided in Sec. 7, and
we conclude in Sec. 8.

1 One smartphone in our study retained a smudge for longer than a
month without any significant deterioration in an attacker’s collection
capabilities.

2 We used a commercial photo editing package to adjust lighting and
color contrast, only, but software included with most operating systems
is more than sufficient for this purpose.

1

2 Threat Model
We consider two styles of attacker, passive and active. A
passive attacker operates at a distance, while an active
attacker has physical control of the device.

A passive attacker who wishes to collect smartphone
touch screen smudges may control the camera angle,
given the attacker controls the camera setup, but the
smartphone is in possession of its user. The attacker has
no control of the places the user takes the smartphone,
and thus cannot control lighting conditions or the angle
of the phone with respect to the camera. The attacker can
only hope for an opportunity to arise where the conditions
are right for good collection. An active attacker, however,
is capable of controlling the lighting conditions and is al-
lowed to alter the touch screen to increase retrieval rate.
This could include, for example, cleaning the screen prior
to the user input, or simply moving the touch screen to be
at a particular angle with respect to the camera.

For the purposes of our experiment, we make a strong
assumption about the attacker’s “activeness;” she is in
possession of the device, either surreptitiously or by con-
fiscation, and is capable of fully controlling the lighting
and camera conditions to extract information. We believe
such an attacker is within reason considering search and
seizure procedures in many countries and states. How-
ever, a passive smudge attack, e.g., via telephotography,
can still be useful in a later active attack, where the
touch screen device becomes available. The information
obtained will often still be fresh – users tend to leave
their passwords unchanged unless they suspect a com-
promise [3] – encouraging multiphase attack strategies.

3 Android Password Pattern
The Android password pattern is one of two unlock
mechanisms, as of the release of Android 2.2 where
alpha-numeric pins are now allowed [1]. However, the
password pattern is currently the primary authentication
mechanism on the vast majority of Android devices that
have not yet received the update, and the pattern remains
an authentication option on Android 2.2 devices.

The Android pattern is one style of graphical pass-
words where a user traverses an onscreen 3x3 grid of con-
tacts points. A pattern can take on a number of shapes
and can be defined as an ordered list of contact points
(Fig. 1 provides an indexing scheme). For example, the
“L” shaped password can be represented as the ordered
list |14789|, i.e., the user begins by touching contact point
1, drawing downward towards point 7, and finally across
to point 93.

3Although a pattern can be entered using two fingers, stepping in
order to simulate a drag from dot-to-dot, it is unlikely common practice
because it requires more effort on the part of the user and is not part of
the on-screen instructions provided by Android.

Figure 1: An illustration of the Android password pat-
tern screen with overlaid identification numbers on con-
tact points.

There are a three restrictions on acceptable patterns. It
must contact a minimum of four points, so a single stroke
is unacceptable. Additionally, a contact point can only be
used once. These two restrictions imply that every pat-
tern will have at least one direction change, and as the
number of contact points increases, more and more such
direction changes are required. Such convoluted connec-
tions of smudges may actually increase the contrast with
background noise, as one of our experiments suggests
(see Sec. 5).

The last, and most interesting, restriction applies to in-
termediate contact points: If there exists an intermediate
point between two other contact points, it must also be
a contact point, unless, that point was previously con-
tacted. For example, in the “L” shaped pattern, it must
always contain points 4 and 8 even though the ordered list
|179| would construct the exact same pattern If a user at-
tempted to avoid touching either point 4 or 8, both would
be automatically selected. Conversely, consider a “+”
shaped pattern constructed by either the order list |25846|
or |45628|, the connected points |46| or |28| are allowed
because point 5 was previously contacted.

Due to the intermediate contact point restriction, the
password space of the Android password pattern contains
389,112 possible patterns4. This is significantly smaller
than a general ordering of contact points, which contains
nearly 1 million possible patterns. Still, this is a reason-
ably large space of patterns, but when considering infor-
mation leakage of smudge attacks, an attacker can se-
lect a highly likely set of patterns, increasing her chances
of guessing the correct one before the phone locks-out5.
Sometimes, even, the precise pattern can be determined.

4Due to the complexity of the intermediate contact point restriction,
we calculated this result via brute force methods.

5Android smartphones require the user to enter a Google user-name
and password to authenticate after 20 failed pattern entry attempts.

2

Figure 2: Password pattern used for captures; it contains
streaks in all orientations and most directions.

4 Experimental Setup
In this section we present our experimental setup for cap-
turing smudges from smartphone touch screens, includ-
ing a background on photography and lighting. We exper-
imented with two Android smartphones, the HTC G1 and
the HTC Nexus1, under a variety of lighting and camera
conditions. We also experimented with simulated phone
application usage and smudge distortions caused by inci-
dental clothing contact.

4.1 Photography and Lighting
This paper primarily investigates the camera angles and
lighting conditions under which latent “smudge patterns”
can be recovered from touchscreen devices. The funda-
mental principles of lighting and photographing objects
of various shapes and reflective properties are well un-
derstood, being derived from optical physics and long
practiced by artists and photographers. But the particu-
lar optical properties of smartphone touchscreens and the
marks left behind on them are less well understood; we
are aware of no comprehensive study or body of work that
catalogs the conditions under which real-world smudges
will or will not render well in photographs of such de-
vices.

A comprehensive review of photographic lighting the-
ory and practice is beyond the scope of this paper; an
excellent tutorial can be found, for example, in [7]. What
follows is a brief overview of the basic principles that un-
derlie our experiments. In particular, we are concerned
with several variables: the reflective properties of the
screen and the smudge; the quality and location of the
light sources; and finally, the location of the camera with
respect to the screen.

Object surfaces react (or do not react) to light by ei-
ther reflecting it or diffusing it. Reflective surfaces (such
as mirrors) bounce light only at the complementary an-
gle from which it arrived; an observer (or camera) sees
reflected light only if it is positioned at the opposite an-
gle. Diffuse surfaces, on the other hand, disperse light in

all directions regardless of the angle at which it arrives;
an observer will see diffused light at any position within
a line of site to the object. The surfaces of most objects
lie somewhere on a spectrum between being completely
reflective and completely diffuse.

Lighting sources vary in the way they render an ob-
ject’s texture, depending on both the size and the angle of
the light. The angle of the light with respect to the subject
determines which surfaces of the object are highlighted
and which fall in shadow. The size of the light with re-
spect to the subject determines the range of angles that
keep reflective surfaces in highlight and how shadows
are defined. Small, point-size lights are also called hard
lights; they render well-defined, crisp shadows. Larger
light sources are said to be soft; they render shadows as
gradients. Finally, the angle of the camera with respect to
the subject surface determines the tonal balance between
reflective and diffuse surfaces.

These standard principles are well understood. What is
not well understood, however, is the reflective and diffuse
properties of the screens used on smartphone devices or
of the effects of finger smudges on these objects. We
conducted experiments that varied the angle and size of
lighting sources, and the camera angle, to determine the
condition under which latent smudge patterns do and do
not render photographically.

4.2 Photographic Setup
Our principle setup is presented in Fig. 3. We use a sin-
gle light source (either soft, hard lighting, or omnidirec-
tional lighting via a lighting tent) oriented vertically or
horizontally. A vertical angle increments in plane with
the camera, while a horizontal angle increments in a per-
pendicular plane to the camera. All angles are measured
with respect to the smartphone.

Vertical angles were evaluated in 15 degree incre-
ments, inclusively between 15 and165 degrees. Degrees
measures are complementary for vertical and lens angles.
For example, a lens angle of 15 degrees and a vertical
angle of 15 degrees are exactly complementary such that
light reflects off the touch screen into the camera like a
mirror. Horizontal angles were evaluated inclusively be-
tween 15 and 90 degrees as their complements produce
identical effects. Similarly, we only consider camera an-
gles between 15 and 90 degrees, inclusively; e.g., a ver-
tical and lens angle both at 105 degrees is equivalent to
a vertical and lens angle both at 15 degrees with just the
light and camera switch. Additionally, when the lens an-
gle is at 90 degrees, only vertical lighting angles of 15
to 90 degrees need consideration6. Finally, for omnidi-
rectional light only the lens angles need to be iterated as

6We do not consider 180 or 0 degree angles, which cannot provide
lighting or exposure of the smudges.

3

Figure 3: Principle Photographic Setup: The lighting and
camera conditions at various vertical lighting angles (in
plane with camera), horizontal lighting angles (in perpen-
dicular plane with camera), and lens angles with respect
to the smartphone.

light is dispersed such that it seems it is originating from
all possible angles.

In total, there are 188 possible setups. For the base
lighting condition, hard or soft, there are 11 vertical and
6 horizontal angles for 5 possible lens angles, not includ-
ing the 90 degrees lens angle which only has 6 possible
setups. With the addition of 6 lens angles for omnidi-
rectional lighting, that leaves 188 = 2(5 × 17 + 6) + 6
setups, but there is still overlap. A 90 degree angle ver-
tically and horizontally are equivalent, resulting in 178
unique setups.

4.3 Equipment Settings
We used relatively high end, precision cameras, lenses,
lighting, and mounting equipment in our experiments to
facilitate repeatability in our measurements. However,
under real-world conditions, similar results could be ob-
tained with much less elaborate (or expensive) equipment
and in far less controlled environments.

All photographs were captured using a 24 megapixel
Nikon D3x camera (at ISO 100 with 16 bit raw capture)
with a tilting lens (to allow good focus across the en-
tire touch screen plane). The camera was mounted on an
Arca-Swiss C-1 precision geared tripod head. The large
(“soft”) light source was a 3 foot Kino-Flo fluorescent
light panel; the small (“hard”) light was a standard cin-
ema “pepper” spotlight. For single light experiments, the
directional light was at least 6 stops (64 times) brighter
than ambient and reflected light sources. For omnidirec-
tional lighting, we used a Wescott light tent, with light
adjusted such that there was less than a 1 stop (2x) differ-
ence between the brightest and the dimmest light coming
from any direction. All images were exposed based on an
incident light reading taken at the screen surface.

4.4 Pattern Selection and Classification
In all experiments, we consider a single pattern for con-
sistency, presented in Fig. 2. We choose this particular
pattern because it encompasses all orientation and nearly
all directions, with the exception of a vertical streak up-
wards. The direction and orientation of the pattern plays
an important role in partial information collection. In cer-
tain cases, one direction or orientation is lost (see Sec. 6).

When determining the effectiveness of pattern iden-
tification from smudges, we use a simple classification
scheme. First, two independent ratings are assigned on a
scale from 0 to 2, where 0 implies that no pattern infor-
mation is retrievable and 2 implies the entire pattern can
be identified. When partial information about the pattern
can be observed, i.e., there is clearly a pattern present but
not all parts are identifiable, a score of 1 is applied. Next,
the two independent ratings are combined; we consider a
pattern to be fully identifiable if it received a rating of 4,
i.e., both classifiers indicated full pattern extraction7.

We also wished to consider the full extent of an at-
tacker, so we allow our classifiers to adjust the photo
in anyway possible. We found that with a minimal
amount of effort, just by scaling the contrast slighting,
a large number of previously obscured smudges become
clear. Additionally, all the image alterations performed
are equivalent to varying exposure or contrast settings on
the camera when the image was captured.

5 Experiments
In this section, we present our experiments to test the
feasibility of a smudge attack via photography. We con-
ducted three experiments: The first considers ideal sce-
narios, where the touch screen is clean, and investigated
the angles of light and camera that produce the best la-
tent images. The results of the first experiment inform
the later ones, where we simulate application usage and
smudge removal based on contact with clothing.

5.1 Experiment 1: Ideal Collection
The goal of this experiment was to determine the condi-
tions by which an attacker can extract patterns, and the
best conditions, under ideal settings, for this. We con-
sider various lighting and camera angles as well as differ-
ent styles of light.

Setup. In this experiment we exhaust all possible light-
ing and camera angles. We consider hard and soft lighting
as well as completely disperse, omnidirectional lighting,
using a total of 188 photographs in classification. We

7 We note that this rating system can lead to bias because the same
pattern is used in every photograph. Specifically, there may be projec-
tion bias; knowing that a smudge streak is present, the classifier projects
it even though it may not necessarily be identifiable. We use two inde-
pendent classifiers in an attempt to alleviate this bias and only consider
full pattern retrieval if bother classifiers rate with value 4.

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 a

t
o
r

A
b

o
v
e

 R
a
ti
n

g

Rating

Phone A
Phone B
Phone C
Phone D

Figure 4: Cumulative Fraction Graph for Experiment 1:
For each rating and phone, the cumulative fraction of
photos scoring that rating, or higher.

G1 Nexus 1
App. Noise over under over under

dots 4 4 2.7 3.7
streaks 3 2 3 3

dots & steaks 3 1.6 4 3
face 4 2.3 4 2

Table 1: Results of Experiment 2: The average rating
with application usage for patterns entered over and un-
der the application noise.

experiment with four phones with different qualities of
pattern entry, referred to by these letter identification:

• Phone A: HTC G1 phone with the pattern entered
using “normal” touches
• Phone B: HTC G1 phone with the pattern entered

using “light” touches
• Phone C: HTC G1 phone with the pattern entered

after the phone has been held in contact with a face,
as would happen after a phone call
• Phone D: HTC Nexus 1 phone with pattern entered

using “normal” touches

Results. As described previously, each photograph is
rated by the combination of two unique ratings on a scale
from 0 to 2, which when combined provide a rating on
a scale between 0 and 4. The key results of this classi-
fication are presented in Fig. 4 as a cumulative fraction
graph.

The pattern that was most easily identifiable was Phone
C, where the phone was first placed on a face prior to
pattern entry. In roughly 96% of the photographic setups,
a partial pattern was retrievable (i.e., a rating of at least
1), and in 68% of the setups, the complete pattern was
retrieved (i.e., a rating of 4).

In contrast to the other tested phones, Phone C was
dirty prior to password entry as broad smudging occurred
due to contact with the facial skin. Entering the pattern
on top of this broad smudge greatly contrasted with the
pattern entry smudges (see Fig. A5). We explore this
phenomenon further in Experiment 2. It is important to
note that entering a pattern after a phone call is likely
common because most conversations are longer than the
phone lockout period. If a user wants access to other ap-
plications post hang-up, she will have to enter her pattern.

Phone B was the worst performing pattern entry. In
this case, the pattern was entered using light touching,

yet in over 30% of the setups, some partial information
was retrievable. Moreover, in 14% of the photographs,
the complete pattern is retrievable.

By far the best lens angle for retrieval was 60 degrees
(followed closely by 45 degrees). In more than 80% of
the lighting scenarios with a 60 degree lens, perfect or
nearly perfect pattern retrieval was possible with a 60 de-
gree camera angle. The worst retrieval was always when
the vertical and lens angle were complimentary which
transformed the touch screen surface into a mirror, effec-
tively washing out the smudges (see Fig. A4 for one such
example). Additionally, omnidirectional light (i.e., using
the light tent), had a similar effect. Omnidirectional light
implies that there always exists a perfect reflection into
the camera as light is emitted from all angles.

The most interesting observation made from the pho-
tographs is that in many of the setups, the directionality
of the smudges can be easily discerned. That is, the order
of the strokes can be learned, and consequently, the pre-
cise pattern can be determined. As an example see Fig. 5.
At each direction change, a part of the previous stroke
is overwritten by the current one, most regularly at con-
tact points. On close inspection, the precise order of the
contact points can be clearly determined and the pattern
becomes trivially known.

5.2 Experiment 2: Simulated Usage
In this experiment, we were interested in the affect that
user applications have on the capabilities of an attacker.
Previously, we demonstrated that talking on the phone
may increase the contrast between a pattern smudge and
the background; we further elaborate on that point here.
Additionally, we investigate the affect of application us-
age as it may occur prior to or post pattern entry.

Setup. The setup of this experiment was informed by
the results of the previous. We photographed the phones

5

Figure 5: Phone A, from Experiment 1, where the pattern
is entered with normal touches. Notice that the direction-
ality of the pattern can be determined at ever direction
change.

Figure 6: Phone from Experiment 3, where the phone
was wiped, placed (and replaced) in a pocket. Unlike
Phone A from Fig. 5, some directionality is lost in the
upper left portion of the pattern.

at a 45 degree lens angle and at three of the best vertical
angles: 15, 75, and 90 degrees8.

We based our usage simulation on the telephone ap-
plication; an application installed on all Android smart-
phones. Although the phone application is not repre-
sentative of all application usage, it has some important
characteristics present in nearly all applications. If a user
were to enter a phone number it would require a sequence
of presses, or smudge dots, on the screen. A user could
also scroll her contact list, causing up and down smudge
streaking, or left and right, depending on the phones cur-
rent orientation. Additionally, there may be combinations
of these.

For each phone in the experiment – two G1 phones and
two Nexus 1 phones – we consider 3 usage scenarios; (1)
A grid of smudge dotting; (2) a hashing of up and down
and left right smudge streaks; and (3), a combination of
smudge dots and streaks in a grid and hash, respectively.
We also consider if the pattern was entered prior to appli-
cation usage (i.e., the pattern is first entered, and then the
steaks and/or dots are applied) or post application usage
(i.e., first steaks and/or dots are applied followed by the
pattern). Finally, as a follow up to Experiment 1, we con-
sider the effect of placing the touch screen surface to the
face, before and after pattern entry. In all pattern entries,
we assume normal touching.

Results. As before, each photograph was classified by
two individuals, and the combined results are considered.
The results are summarized in Table 1. In general, en-
tering the pattern over the usage smudges is more clearly
retrieved, as expected. Dots also tend to have less of an
effect then streaks, again as expected.

Interestingly, the over pattern entry for the combina-
tion of dots and streaks on the Nexus 1 scored perfect

8Although 60 degrees lens angle performed best overall, the setup
required for 45 degrees was much simpler and had similarly good results
at these vertical lighting angles.

retrieval (see Fig. A1 for a sample image). Upon closer
inspection, this is due to the intricacy of the pattern – the
many hooks and turns required for such a long pattern –
created great contrast with usage noise, and thus the pat-
tern was more easily retrieved. Finally, as expected based
on the results of Experiment 1, broad smudging on the
face provided perfect retrieval for the over case, and even
in the under case, partial information was retrieved.

5.3 Experiment 3: Removing Smudges
In this experiment we investigated the effects of smudge
distortion caused by incidental contact with or wiping on
clothing.

Setup. Using the same photographic setup as in Exper-
iment 2, we photographed two clothing interference sce-
narios, both including placing and replacing the phone
in a jeans pocket. In the first scenario, the user first in-
tentionally wipes the phone, places it in her pocket, and
removes it. In scenario two, the user places the phone in
her pocket, sits down, stands up, and removes it.

Although this does not perfectly simulate the effects
of clothing contact, it does provide some insight into the
tenacity of a smudge on a touch screen. Clearly, a user
can forcefully wipe down her phone until the smudge is
no longer present, and such scenarios are uninteresting.
Thus, we consider incidental distortion.

Results. Surprisingly, in all cases the smudge was clas-
sified as perfectly retrievable. Simple clothing contact
does not play a large role in removing smudges. How-
ever, on closer inspection, information was being lost.
The directionality of the smudge often could no longer
be determine (See Fig. 6 for an example). Incidental wip-
ing disturbed the subtle smudge overwrites that informed
directionality. Even in such situations, an attacker has
greatly reduced the likely pattern space to 2; the pattern
in the forward and reverse direction.

6

Figure 7: Phone from Experiment 1: One stroke of the
pattern, |84|, is lost due to the camera or lighting angle.
The contrast has been adjusted.

Figure 8: Phone from Experiment 2: With this usage
condition (dot and streaks, under), the pattern is nearly
all lost. The contrast has been adjusted.

5.4 Summary
Our photographic experiments suggest that a clean touch-
screen surface is primarily, but not entirely, reflective,
while a smudge is primarily, but not entirely, diffuse. We
found that virtually any directional lighting source that is
not positioned exactly at a complementary angle to the
camera will render a recoverable image of the smudge.
Very little photo adjustment is required to view the pat-
tern, but images generally rendered best when the photo
capture was overexposed by two to three f-stops (4 to 8
times “correct” exposure).

If the effect of the smudge is to make a chiefly reflec-
tive surface more diffuse, we would expect completely
even omnidirectional light to result in very poor rendering
of the image. And indeed, our experiments confirm this
– even extensive contrast and color adjustment was gen-
erally unable to recover the smudge pattern from images
captured under omnidirectional light under the light tent.
Fortunately for the attacker, however, most “real world”
lighting is primarily directional. The main problem for an
attacker who wishes to surreptitiously capture a smudge
pattern is not application noise or incidental clothing con-
tact (as Experiment 2 and 3 showed) but rather ensuring
that the angle of the camera with respect to the screen sur-
face is not at an angle complementary to any strong light
source.

6 Directions for Exploitation
We have demonstrated the ability of an attacker to cap-
ture information from smudges via photography. We now
discuss how the information gained can be use to defeat
the Android password pattern. As presented in Sec. 3,
the size of the pattern space contains 389,112 distinct
patterns. A significant number of those patterns can be
eliminated as possible passwords by a smudge attacker.
For example, perfect pattern retrieval with directional-
ity is possible, reducing the possibilities to 1. Partial re-
trieval of patterns from smudges requires deeper analysis,
towards which we present initial thoughts on exploiting

captured smudges. Smudge data can be combined with
statistical data on human behavior such as pattern usage
distributions for large sets of users to produce likely sets
of patterns for a particular smudged phone.

6.1 Using Partial Information
Using the photographs taken during our experiments, we
investigated what was lost in partial retrieval scenarios.
Two cases emerged: First, a lack of finger pressure and/or
obscuration of regions of the photograph led to informa-
tion loss. For example, in Fig. 7, the diagonal for connec-
tion |48| cannot be retrieved. This partial retrieval is still
extremely encouraging for an attacker, who has learned a
good deal about which patterns are likely, e.g., it could be
each isolated part uniquely, the two parts connected, etc.

Another case emerges when a significant amount of us-
age noise obscures the smudge present; e.g., Fig. 8 is a
photo from Experiment 2 with dots and streaks over the
pattern entry. An attacker may guess that two sets of “V”
style diagonals are present, but in general the entire pat-
tern is not observable. Moreover, using this information
is not likely to reduce the pattern space below the thresh-
old of 20 guesses.

However, an attacker may have access to many images
of the same pattern captured at different points in time.
By combining this information, it may be possible for
an attacker to recreate the complete pattern by data fu-
sion [6]. As an example, consider an attacker combining
the knowledge gained from the Fig. 7 and Fig. 8; if it was
known that the same pattern was entered, the bottom “V”
shape in Fig. 8 is enough information to finish the pattern
in Fig. 7.

6.2 Human Factors
Human behavior in password selection has been well
studied [11, 15], and even in the graphical password
space, password attack dictionaries based on human
mnemonics or pattern symmetry have been proposed
[17, 18]. Similar behaviors seem likely to emerge in the
Android password space, greatly assisting an attacker.

7

Figure 9: A 30 degree pattern stroke that is difficult to
enter when points 4 and/or 5 are previously unselected.

We conjecture that the ease of pattern entry is an im-
portant factor for consideration because a user must enter
her password on every phone lock; generally, a 30 sec-
ond timeout. If the password is difficult to enter consis-
tently, then it would be less usable and therefor less likely
the user’s chosen pattern. For example, the contact point
stroke in Fig. 9 contains a 30 degree strokes which is
prone to error when the intermittent contact points are not
previously touched (e.g., point 4 and 5). When consider-
ing this additional restriction, the password space can be
reduced by over 50% to 158,410 likely patterns.

Another usability factor is pattern length: The longer
the pattern, the longer the amount of time it takes to enter
it. A frequent smartphone user may avoid excessively
long patterns. In the same vein, a user may avoid frequent
direction changes, as each requires, again, more time to
enter. Other human factors may play a role in pattern
selection and investigating them in the context of smudge
attacks is an area of future research.

7 Related Work
Previous work on this subject is limited. Perhaps the clos-
est related work was performed by Laxton et al. regard-
ing copying physical keys based on photographic analy-
sis [12], a so called teleduplication attack. An attacker
may reproduce the key by measuring the position and
relative depth of the key cuts to extract the bitting code.
Once known, the key may be duplicated without the at-
tacker ever having possessed it.

Smudge and teleduplication attacks are similar in a
number of ways. First, both take advantage of visual
information, whether password smudges or key bittings.
Many of the same basic principles of teleduplication at-
tacks, such as the photographic capturing methods, are
relevant to our work. Both attacks are executed in physi-
cal space and can be done from afar. Finally, the useful-
ness of information gained requires next steps. In the case
of a teleduplication attack, duplicating the key is only

useful if the door it opens is known. In the same way,
learning the pattern is only useful if the touch screen de-
vice were to come into the attacker’s possession.

There has been a fair amount of interesting research
performed on graphical passwords [2, 16]. Specifically, it
should also be noted that there are several other proposed
graphical password schemes [2, 4, 10]. We believe that
several of these authentication procedures, if performed
on a touch screen, may be susceptible to smudge attacks.

If smudge attacks were to be automated, previous work
in the area automated image recognition, e.g. facial
recognition techniques [5, 9] or optical character recog-
nition [8, 13, 14], would be applicable. Such automated
techniques are especially dangerous if an attacker pos-
sessed many successive images (e.g., via video surveil-
lance).

8 Conclusion
In this paper we explored smudge attacks using residual
oils on touch screen devices. We investigated the feasi-
bility of capturing such smudges, focusing on its effect
on the password pattern of Android smartphones. Using
photographs taken under a variety of lighting and cam-
era positions, we showed that in many situations full or
partial pattern recovery is possible, even with smudge
“noise” from simulated application usage or distortion
caused by incidental clothing contact. We have also out-
lined how an attacker could use the information gained
from a smudge attack to improve the likelihood of guess-
ing a user’s patterns.

Next steps in our investigation include a deeper anal-
ysis of the advantages derived from analysis of smudges
and an end-to-end smudge attack experiment on a small
(voluntary) population of Android users who employ the
password pattern. Additionally, we would like to perform
a broad study of human factors in pattern selection as they
relate to the Android pattern.

We believe smudge attacks based on reflective proper-
ties of oily residues are but one possible attack vector on
touch screens. In future work, we intend to investigate
other devices that may be susceptible, and varied smudge
attack styles, such as heat trails [19] caused by the heat
transfer of a finger touching a screen.

The practice of entering sensitive information via
touch screens needs careful analysis in light of our re-
sults. The Android password pattern, in particular, should
be strengthened.

Acknowledgments
We would like to thank the anonymous reviewers for
their useful insight and thoughtful remarks, and Samual
Panzer for his assistance during the experiments. Fi-
nally, this work was supported by Biomedical Informa-

8

tion Red Team (BIRT) NFS Award CNS-0716552 and
Security Services in Open Telecommunication Networks
NFS grant CNS-0905434.

References
[1] Android 2.2 platform highlights. http:

//developer.android.com/sdk/android-2.
2-highlights.html.

[2] D. Davis, F. Monrose, and M. K. Reiter. On user choice in
graphical password schemes. In USENIX Sec’04, 2004.

[3] A. M. DeAlvare. A framework for password selection. In
UNIX Security Workshop II, 1998.

[4] H. Gao, X. Guo, X. Chen, L. Wang, and X. Liu. Yagp: Yet
another graphical password strategy. Computer Security
Applications Conference, Annual, 0:121–129, 2008.

[5] S. Gutta, J. R. Huang, H. Wechsler, and B. Takacs. Auto-
mated face recognition. volume 2938, pages 20–30. SPIE,
1997.

[6] D. L. Hall and J. Llinas. An introduction to multisensory
data fusion. Proc. IEEE, 85(1), January 1997.

[7] F. Hunter and P. Fuqua. Light: Science and Magic: An
Introduction to Photographic Lighting. Focal Press, 1997.

[8] S. Impedovo, L. Ottaviano, and S. Occhinegro. Optical
character recognition – a survey. International Journal of
Pattern Recognition and Artificial Intelligence (IJPRAI),
5(1-2):1–24, 1991.

[9] R. Jenkins and A. Burton. 100% accuracy in automatic
face recognition. Science, 319(5862):435, January 2008.

[10] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and A. D.
Rubin. The design and analysis of graphical passwords.
In USENIX Sec’99, pages 1–1, Berkeley, CA, USA, 1999.
USENIX Association.

[11] D. V. Klein. Foiling the cracker: A survey of, and im-
provements to, password security. In USENIX Sec’90,
1990.

[12] B. Laxton, K. Wang, and S. Savage. Reconsidering phys-
ical key secrecy: Teleduplication via optical decoding. In
CCS, October 2008.

[13] J. Mantas. An overview of character recognition method-
ologies. Pattern Recognition, 19(6):425–430, 1986.

[14] S. Mori, H. Nishida, and H. Yamada. Optical Character
Recognition. John Wiley & Sons, Inc., New York, NY,
USA, 1999.

[15] R. Morris and K. Thompson. Password security: a case
history. Communnincations of the ACM, 22(11):594–597,
1979.

[16] K. Renaud and A. D. Angeli. Visual passwords: Cure-all
or snake-oil. Communications of the ACM, 52(12):135–
140, December 2009.

[17] J. Thorpe and P. van Oorschot. Graphical dictionaries and
the memorable sapce of graphical passwords. In USENIX
Sec’04, August 2004.

[18] J. Thorpe and P. C. van Oorschot. Human-seeded at-
tacks and exploiting hot-spots in graphical passwords. In
USENIX Sec’07, 2007.

[19] M. Zalewski. Cracking safes with thermal imaging, 2005.
http://lcamtuf.coredump.cx/tsafe/.

A Appendix

Figure A1: A phone from Experiment 2: The pattern con-
trasts greatly with the background noise; a grid of dots.
The contrast on this image has been adjusted.

Figure A2: An image from Experiment 1: All four
phones clearly displayed the pattern without the need to
adjust contrast. Even the lightly touched Phone B has a
visible pattern.

9

Figure A3: An image from Experiment 2: Even with
background noise (over, on the left, and under, on the
right of the pattern entry), either partial or complete pat-
tern identification is possible as it contrast with such us-
age noise. The contrast on these images has been ad-
justed.

Figure A4: An image from Experiment 1: Complimen-
tary lighting and lens angle causes significant glare, lead-
ing to unidentifiable patterns and information loss.

Figure A5: Phone C from Experiment 1: Without any
image adjustment, the pattern is clear. Notice that the
smudging, in effect, cleans the screen when compared to
the broad smudging caused by facial contact. This con-
trast aids in pattern identification, as demonstrated in Ex-
periment 2.

Figure A6: Phone D from Experiment 1, prior to and
post contrast adjustment: In many situations, adjusting
the levels of color or contrast can highlight a smudge pre-
viously obscured. The images on the left and right are
identical.

10

Privacy-Aware Message Exchanges for Geographically Routed
Human Movement Networks

Adam J. Aviv+, Matthew Blaze+, Jonathan M. Smith+ and Micah Sherr∗
+ University of Pennsylvania ∗ Georgetown University

ABSTRACT
This paper introduces a novel privacy-aware geographic rout-
ing protocol for Human Movement Networks
(HumaNets). HumaNets are fully decentralized opportunis-
tic store-and-forward, delay-tolerate networks composed of
smartphone devices. Such networks allow participants to
exchange messages phone-to-phone and have applications
where traditional infrastructure is unavailable (e.g., during
a disaster) and in totalitarian states where cellular network
monitoring and censorship are employed.

Our protocol leverages self-determined location profiles
of smartphone operators’ movements as a predictor of future
locations, enabling efficient geographic routing. Since these
profiles contain sensitive information about participants’
prior movements, our routing protocol is designed to mini-
mize the exposure of sensitive information during a message
exchange. We demonstrate via simulation over both syn-
thetic and real-world trace data that our protocol is highly
scalable, provides reasonable performance, and leaks little
information.

1. INTRODUCTION
The ubiquity of smartphones enable new communication

models beyond those provided by cellular carriers. While
standard cellular communication uses a centralized infras-
tructure that is maintained by the service provider, smart-
phones have communication interfaces such as ad-hoc WiFi
and Bluetooth that allow direct communication between de-
vices. Since smartphone owners often carry their devices
and encounter other individuals (and their smartphones) in
their daily routines, smartphones enable fully decentralized
store-and-forward networks that completely avoid the cellu-
lar infrastructure.

Human Movement Networks (HumaNets) [3] fit this model
and are designed to allow participants to exchange messages
phone-to-phone without using any centralized infrastructure.
HumaNets’ “out-of-band” message passing is applicable when
cellular networks are unavailable or if the networks are un-
trusted (i.e., operated by a totalitarian state that censors [14],
shuts down [36], or otherwise leverages its communication
systems to restrict its citizenry [17]).

Rather than rely on network addresses, HumaNets route
messages using geocast – an addressing scheme that directs
messages towards a particular geographic region. To cope
with mobility, HumaNet routing protocols route messages
based on message carriers’ predicted future locations. This
is accomplished by leveraging self-determined location pro-
files that approximate the smartphone owners’ routine move-
ments. The patterns of human mobility – for example, the

daily commute to and from work – serve as predictors of
future locations. HumaNets take advantage of this observa-
tion by greedily forwarding messages to smartphones whose
owners’ location profiles indicate that they are good candi-
dates for delivery.

Unfortunately, many existing routing protocols that have
been developed in the context of MANETs or DTNs are in-
compatible with HumaNets due to either their lack of support
for the dynamism of smartphone networks or their inability
to safeguard sensitive location information. Existing rout-
ing approaches often assume highly connected and mostly
static networks [11, 33, 37, 42, 43]. Additionally, privacy
issues must be central when designing a HumaNet routing
protocol since location profiles contain sensitive informa-
tion about participants’ prior movements. The disclosure of
such information is particularly dangerous when HumaNets
are used for covert communication in totalitarian regimes.
Prior approaches that do not consider privacy [18, 20], rely
on trusted third parties [13], or assume a priori trust rela-
tionships [6] are also unsuitable for HumaNets.

This paper proposes a novel routing protocol for HumaNets
that protects participants’ location profiles from an adver-
sary who wishes to learn previous movements and/or de-
termine “important” locations of network users (e.g., home,
work, or the location of underground activist meetings). Our
technique, which we call Probabilistic Profile-Based Rout-
ing (PPBR), balances performance and privacy by efficiently
routing messages in a manner that minimizes the exposure
of users’ location profiles. We demonstrate through trace-
driven simulations using both real-world and synthetic hu-
man movement data that our PPBR protocol is highly scal-
able, efficiently routes messages, and preserves the privacy
of profile information. In summary, the contributions of this
paper are:

• The design and introduction of a fully decentralized,
privacy-preserving, geographic-based HumaNet mess-
age routing protocol for smartphones;
• An analysis of the privacy and security properties of-

fered by our routing protocol; and
• A trace-driven simulation study (using both real-world

and synthetic data) that evaluates our method’s scala-
bility and efficiency.

2. NETWORK ASSUMPTIONS & GOALS
To achieve reasonable performance, HumaNets leverage hu-

mans’ tendency to follow routines: The locations that peo-
ple frequented in the past are predictors of their future loca-
tions [3]. However, a device’s location history may be ex-
tremely sensitive, and moreover, combining multiple nodes’

1

location histories may allow an adversary to discover social
networks and enumerate participants’ movements. Hence,
the high-level goal of our PPBR protocol and the central
challenge of this paper is to enable efficient geographic
-based messaging that limits the exposure of information at
message exchanges. In particular, an adversary who wit-
nesses a message exchange would learn little important in-
formation about the participants’ location histories.

Importantly, however, our HumaNet routing protocol does
not conceal the identities of the network’s participants. An
adversary who intercepts a PPBR message can reasonably
conclude that the sender is participating in a HumaNet. Par-
ticipating in a HumaNet inherently carries risk if used as an
anti-censorship technology: This is unfortunately true of any
system that may be deemed “subversive”. However, when
other means of communication are impossible (either due to
global monitoring or blocked connectivity), HumaNets pro-
vide a means to exchange information in a manner that is
efficient, scalable, difficult to surveil, and privacy-aware.

Requirements. HumaNets routing protocols are designed
for location-aware mobile devices. We assume that network
participants can learn their locations (e.g., via GPS1) without
relying on the cellular service provider’s network, and that
devices contain sufficient storage to record their movement
histories.

We additionally assume that participants have knowledge
of the routing area. Since HumaNets enable geocast routing,
a message that is targeted at specific receivers requires the
sender to have some knowledge about the receivers’ likely
future locations (e.g., their home or work); this requirement
is similar to that imposed by traditional networking where
users need knowledge of a service’s hostname or IP address.
We also assume that participants know some coarse-grain
information about general movement statistics over the rout-
ing area. In particular, nodes should be capable of estimating
the “popularity” of city areas – e.g., that the upper west side
of Manhattan is more densely traveled than Far Rockaway,
Queens. This information can be obtained from census data,
other public source of information, or personal experience.
Such information can be shipped with the HumaNets software
and is assumed to be known to an adversary.

Threat Model. We envision both passive and active ad-
versaries. A passive adversary may have any number of
confederates and is able to observe message exchanges at
a fixed number of locations throughout the HumaNet routing
area. An active adversary may additionally participate in
HumaNets by generating fake messages, accepting messages,
and/or dropping or misrouting messages.

We do not provide protection against a mobile targeting
adversary. An adversary that can physically follow a node
can trivially learn about its whereabouts and discover its rou-
tine movements. Such a “stalker” adversary is also very

1GPS is a unidirectional protocol and requires only the reception
of signals from U.S.-operated satellites.

costly to deploy. In this paper, we focus on less targeted
attackers and assume an adversary who monitors, intercepts,
or participates in local exchanges that occur in its presence.
The adversary is thus aware of the participants and their lo-
cations at the time of an exchange, and we do not claim
that our system provides traditional location-privacy [19] for
ad hoc networks, although such extensions may be relevant
here. As such, the adversary’s goals are as follows:

• DISRUPTION: Inject failures into the network such that
messages can no longer be reliably delivered.
• DE-ANONYMIZATION: Determine the originating

sender of intercepted messages.
• PROFILING: Infer movement patterns of a targeted in-

dividual or learn his/her “important” locations (e.g.,
home, work, underground meeting place).

Performance and Security Goals. The goal of our rout-
ing protocol is to provide the following properties in the
presence of active and passive adversaries:

• RELIABILITY: Messages should reach their intended
destinations with high probability.
• EFFICIENCY: Messages should reach their intended

destinations with reasonable latency and overhead.
• SCALABILITY: HumaNets should be able to scale to

a large number of participants with many concurrent
messages.
• POINT-TO-POINT: Messages should be exchanged

only point-to-point and avoid any centralized routing
structures.
• PRIVACY-PRESERVATION: The protocol should not

leak the sender’s identity, nor should it reveal infor-
mation about participants’ previous locations.

At first blush, it may seem that naïve flooding and ran-
dom walk strategies are sufficient to achieve the above goals.
Although these strategies achieve the POINT-TO-POINT and
PRIVACY-PRESERVATION properties, they are lacking with
respect to SCALABILITY, EFFICIENCY, and/or RELIABIL-
ITY. In particular, flooding achieves optimal latency and de-
livery rates because all paths are explored, but scales poorly
since all transfers that do not occur along the optimal path
constitute a wasted effort (and, consequently, wasteful power
consumption). Moreover, since several senders may use
HumaNets to disseminate their messages, flooding requires
that nodes store (and worse, communicate) a large fraction of
all messages. At the other extreme, random walk protocols
in which messages are transferred (as opposed to copied)
upon node contacts scales well but incurs poor RELIABIL-
ITY and EFFICIENCY.

It may also seem that traditional cryptographic solutions
would be applicable here. However, the decentralized and
highly dynamic nature of HumaNets make their deployment
difficult. In particular, many cryptographic solutions require
centralized services or trusted third parties. Such approaches
are problematic in our setting since a strong (e.g., nation-
state) adversary could either compromise or prevent access

2

to centralized services. Routing techniques that rely on com-
plex key distribution schemes or expensive cryptographic
operations (for example, SMC [44]) are incompatible with
HumaNets’ distributed architecture and use of
power-constrained devices. A significant advantage of PPBR
is that it provides PRIVACY-PRESERVATION using simple
probabilistic techniques, and avoids the key management and
computation issues present in protocols that provide more
traditional cryptographic protections [6, 13, 38].

3. PRIVACY-PRESERVING ROUTING
At a high level, the Probabilistic Profile-Based Routing

(PPBR) protocol requires participants (nodes) to estimate
whether they are good candidates for delivering a message.
Upon receiving a message from a carrier — i.e., a node that
announces a message — the receiving node makes a local
determination as to whether it is well positioned to deliver
the message to the addressed destination. The node either
accepts or discards the message, and in either case, does not
notify the current carrier as to its choice. If the message is
accepted, the receiving node becomes a carrier and begins to
announce the message. However, unlike flooding techniques
in which messages are continuously duplicated leading to an
exponential number of message copies, each message carrier
in PPBR announces the message to only k contacts, of which
only one out of the k receiving nodes should accept it. The
main task is thus for a receiver to locally determine whether
it is best suited to deliver the message out of the k − 1 other
nodes that received the message.

3.1 HumaNet Preliminaries
Addressing. HumaNets provide a basic addressing primi-
tive, geocast, in which messages are addressed to a geo-
graphic location (e.g., a city square). Messages are routed
to nodes who are likely to travel towards the destination
address and are then locally flooded within the confines of
the specified destination. We do not consider temporal fea-
tures in addressing or routing – i.e., addressing a message
to a location for a specific time – but the protocol described
herein can be easily expanded to meet temporal specifica-
tions2. Additionally, HumaNets do not provide message con-
fidentiality; however, message payloads can be protected us-
ing standard encryption techniques.

HumaNets interpret the routing area as a grid, the dimen-
sions of which are assumed to be known a priori to all nodes
(for example, based on latitude and longitude). Messages are
addressed to a particular grid square. In the remainder of the
paper, when describing a message address or destination, we
refer to the index of the corresponding grid square.
2One method is for nodes to maintain multiple location profiles,
each representing movement information collected at different
times of the day. The message exchange algorithm is as described
later; however, each node now uses the location profile most rele-
vant to the addressed time and location. With this addition, a mes-
sage carrier is not only likely to deliver the message to the location,
but also deliver it at the specified time.

Message Exchanges. Messages are exchanged between
smartphone devices when they come into wireless contact
with one another. We consider a contact to occur when two
nodes are within wireless transmission range, e.g., the range
of Bluetooth or a point-to-point 802.11 transmission in ad
hoc mode. At set time intervals, nodes awaken and begin
the routing protocol. If a contact is made, messages can
be exchanged. Otherwise, if there are no other participants
nearby, the node returns to normal activity.

HumaNets require coarse time synchronization (i.e., within
a few seconds) to ensure message exchanges occur at the ap-
propriate times. Such synchronicity could be achieved using
NTP servers, but this would require nodes to send messages
over centralized networks. Fortunately, smartphone devices
are already highly synchronized as a requirement of partici-
pating in the centralized cellular network [2, 32] (a network
which HumaNets do not use to send messages). If cellular
services are disabled or are untrusted to provide correct time
information, nodes could alternatively obtain the timing in-
formation from GPS satellite timestamps.

3.2 Routing Overview and Constructions
PPBR consists of two phases: a passing phase and a hold-

ing phase (see Figure 1). In the passing phase, a carrier of a
message attempts to pass the message to the first k nodes that
it encounters. A node that receives a message will locally
estimate whether it has the highest similarity to the message
address (a grid square) out of the k − 1 other nodes who
also received (or will receive) the message. If the node per-
ceives itself to be the best candidate for delivery, it accepts
the message, becomes a carrier, and prepares to transition to
the passing phase. Otherwise, the message is dropped. A
node transitions from the passing phase to the holding phase
once it has announced the message to k other neighbors.

The challenge of PPBR is enabling each node to accu-
rately predict whether it is the best of k candidates to ac-
cept a message without conferring with other nodes. The
intuition behind our approach is that a node can compute a
similarity score to a message’s destination using its location
profile – a compact representation of its movement history.
To populate its location profile, a node periodically records
its GPS location and determines the fraction of time spent
within each grid square. Using its location profile along with
background knowledge of the movement patterns of an “av-
erage” node, the node can estimate how well it is positioned
to deliver the message relative to the k−1 other participants
who will receive the message.

An important characteristic of PPBR’s passing phase is
that message reception is not acknowledged. An eavesdrop-
per therefore cannot determine whether a message was ac-
cepted or declined by a nearby node. This makes it diffi-
cult for an adversary to conduct PROFILING attacks against
a receiver, since it has no information to form a judgment
as to whether the receiver’s profile is well-suited for deliv-
ering the message. (We explore the effectiveness of PRO-
FILING attacks against a carrier who announces a message

3

a

a

b

c

b

a

d

d

d

(1) (2) (3)

Figure 1: Overview of PPBR routing. (1) The initial message carrier (node
a) enters the passing phase (grey shading). (2) The carrier encounters three
nodes. (3) Node b considers itself the best of k candidates an accepts the
message, becoming a carrier and initiating its passing phase. After adver-
tising k messages, node a enters the holding phase (black shading).

in Section 5.) To further aggravate PROFILING attacks, if a
node accepts a message and becomes a carrier, it does not
announce the message until it has moved a distance d away
from its current location, preventing the eavesdropper from
observing the transition.

After a carrier has performed k message announcements,
it transitions to the holding phase. In the holding phase, the
carrier maintains the message for some time period, during
which the node, hopefully, enters the message’s addressed
grid square and starts the local flood (restricted to the desti-
nation grid square). If the node does not reach the addressed
grid square within a local timeout, the carrier drops the mes-
sage. A message also has an associated global timeout after
which all carriers drop the message.

Location Profiles. Nodes compute location profiles based
on their movement histories.3 Although long term collection
could be useful in constructing a profile, HumaNets rely on
shorter historical windows to minimize the effects from non-
repeated movements, e.g., vacations.

Each node periodically polls its location (e.g., via GPS)
to update its location profile. The profile is a matrix in-
dexed by geographic grid square such that the value at po-
sition 〈x, y〉 is the normalized number of location readings
in which the node was located at position 〈x, y〉 in the grid.
That is, the value at position 〈x, y〉 in the location profile
corresponds to the frequency that the node visited location
〈x, y〉 in the physical world over some time window. Fol-
lowing our heuristic, we assume that the matrix value at
〈x, y〉 (which is defined based on past behavior) approxi-
mates the node’s future likelihood of visiting location 〈x, y〉
in the physical topology.

More formally, consider a current window of location en-
tries W = (〈xi, yi〉, 〈xj , yj〉 . . .) that are already mapped
to grid square references. The profile p, indexed by grid
squares, contains the values:

p[〈x, y〉] =

{ |W〈x,y〉|
|W | if 〈x, y〉 ∈W

0 otherwise
, (1)

3Recent revelations suggest that popular smartphones may already
collect and store such information [5].

where W〈x,y〉 is the sub-list containing location entries oc-
curring within the grid square 〈x, y〉, p[·] is the index func-
tion returning the associated value, and | · | indicates the
length of the list.

General Node Profile. An advantage of PPBR is that it
does not require nodes to share their location profiles. How-
ever, the technique assumes some globally shared informa-
tion which we call the general node profile. The general
node profile is a model of the “average” node’s movement,
and has the same structure and features as the standard lo-
cation profile. Rather than representing the frequented loca-
tions of a single node, the general profile expresses the pat-
terns of the general population. We assume that the general
node profile is included with HumaNet software.

As we demonstrate in Section 4, the general node profile
does not have to be a perfect model, and can be based on a
rough estimate of population densities. In practice, we posit
that a sufficient general node profile could be constructed
using public data such as population densities from census
data, transportation studies [41], or common knowledge.

Marginal Similarity. A node determines if it is the best
of k−1 other message recipients by comparing its similarity
with the message’s destination to the “average” node’s simi-
larity calculated using the general node profile. If the node’s
similarity is a factor greater, the message is accepted.

More precisely, a node must first be able to calculate the
similarity of a location profile to a message address (grid
square). This is done by considering not only the value in
the profile at the addressed grid-point, but also the values
at nearby grid-points, discounted by their square distance.
Formally, we define the similarity of a node n to a message
m addressed to am to be:

sim(p, am) = p[am] +
∑

ap∈p
ap 6=am

p[ap]

dist(ap, am)2
, (2)

where p is a location profile and dist(ap, am) denotes the Eu-
clidean distance between grid-points ap and am. This com-
putation captures the desired property that a node that more
frequently visits the message’s targeted destination (and
nearby areas) will have higher similarity than a node that
visits the destination region less often4.

A similarity score computed with the general node profile,
rather than an individual node’s profile, represents an esti-
mate of the “average” node’s similarity to the message ad-
dress. We define the relationship between a node n’s similar-
ity and that of the general node’s similarity as the marginal
similarity σ. It is calculated as σ = sim(pn,am)

sim(pg,am) , where pn is
the profile of node n and pg is the general node profile. The

4In our simulations, we found that a squared decay function (i.e.,
the importance of similarity decreases as the square of the distance
from the message address) produces good results. We have addi-
tionally experimented with other decay functions, and found that
they produce similar (but slightly degraded) performance.

4

marginal similarity speaks to how well a node is suited to
become a carrier of a message addressed to am as compared
to a node on average: higher values indicate the node would
make a good message carrier, while lower values indicate
a poor carrier. The next challenge is selecting a threshold
value for σ at which point only one of the k nodes that re-
ceived the message will accept it and become a carrier.

Threshold Selection. We define τ as the threshold
marginal similarity score at which a node accepts a message
and becomes a carrier. Intuitively, τ should be the marginal
similarity such that 1/k marginal similarity calculations are
greater than τ . The threshold is calculated locally (and pri-
vately) by each node. First, a node computes σ for every grid
square in pg:

σ̄ =

〈
sim(pn, a)

sim(pg, a)

∣∣∣∣ ∀ a ∈ pg
〉

(3)

The computations are arranged in a sorted list σ̄, where σ̄i <
σ̄j if i < j. σ̄ represents marginal similarity calculations for
all likely message addresses, and we wish the node to accept
a message for 1/k of those addresses. To do this, a node
chooses τ such that 1/k values in σ̄ are greater than τ ; more
precisely, τ = σ̄i and i = b|σ̄| ∗ (k − 1)/kc, where | · | de-
notes the length function. τ must be updated whenever the
node’s location profile changes. To conserve battery, such a
computation could occur nightly while the device is charg-
ing.

In summary, PPBR messaging supports geocast: Messages
are addressed to a particular grid square and intended for
all participants residing therein. A message carrying node
(a carrier) in the passing phase will duplicate the message
to k other nodes before transitioning to the holding phase.
Of the k nodes that receive a message, k − 1 should drop
the message while a single node should retain it. This pro-
cess is oblivious to the message sender (and an adversary)
who is unaware of which of the nodes accepted the mes-
sage and which dropped it. To determine if a node is a good
carrier (i.e., the best of k), a receiving node computes their
marginal similarity σ, which compares their similarity to that
of the general node’s, as embodied by the general node pro-
file. If σ is greater than their locally calculated threshold
τ , the message is accepted, otherwise it is rejected. Nodes
that accept a message will transition to a passing phase after
traveling a distance d from the point of reception, where they
repeat the process by exchanging the message with k other
nodes. At any point, the message may reach the addressed
grid square, within which, the message is flooded to all par-
ticipants present. Additionally, if a node does not deliver
a message within a local timeout, the message is dropped.
After a global timeout occurs, all message copies in the net-
work are discarded.

4. PERFORMANCE EVALUATION
To evaluate the performance of PPBR, we constructed a

discrete event-driven HumaNets simulator. Our simulator

takes as input a trace of human (cellphone) movement and
overlays the PPBR routing algorithm. In all simulations,
we choose k to be 10 and conduct 300 independent runs.
Message senders are selected randomly across participants,
and message addresses (grid squares) are randomly chosen
by selecting a (different) node and addressing the message
to its most frequented grid square as defined by its location
profile. Our simulation was concerned with measuring the
effectiveness of PPBR over metropolitan areas, and as such,
we did not simulate local flooding. We considered a message
successfully delivered if it reaches the destination address.
The grid overlay consists of 200 m × 200 m grid squares,
roughly the size of a city block, and we chose d — the req-
uisite travel distance of a node before transitioning to the
passing phase — to be the size of a grid square (200 m).

4.1 Simulation Settings and Inputs

Datasets. Due to privacy constraints, the number of re-
alistic datasets that are suited for evaluation is unfortunately
limited. We require that the data contain not only a large
number of nodes, but also that the movement of the nodes
should express regular routines over an extended collection
time (i.e., many days). There is considerable work in con-
structing models for human movement [1, 4, 16, 23, 25, 28];
however, most of these models do not realistically simulate
movement over long periods, nor do they model regular-
ity. There also exists extensive catalogs of real world move-
ment traces, such as the CRAWDAD repository [27]; unfor-
tunately, most of the traces are either too short with too few
nodes or do not contain fine-grained location information.

To demonstrate the feasibility of our routing protocols, we
utilize a suitable real-world data trace as well as a synthetic
trace of human movement (summarized in Table 1):

• Cabspotting: The Cabspotting Dataset [34] contains
GPS coordinates and timestamps of 536 taxicabs in the
San Francisco area. The dataset spans 20 days: from
May 20, 2008 until June 7, 2008. It should be noted
that although the movements of taxis are not repre-
sentative of the general population (taxis are arguably
more mobile than the average person), simulations us-
ing this dataset can be interpreted as representing a net-
work composed of the taxi drivers’ smartphones.
• SLAW: We require a synthetic model that (i) accu-

rately represents human flight patterns, (ii) contact
rates, (iii) waypoints (popular places), and (iv) rou-
tines. The closest model to meeting our needs is Self-
similar Least Action Walk (SLAW) [28]. Based in
part on Levy walks [35], SLAW introduces a proto-
col called Least Action Trip Planning (LATP) that pro-
duces human-like trips between fractal waypoints, that
are themselves determined by finding hotspots in ac-
tual GPS traces. Lee et al. showed that SLAW pro-
duces more human-like inter-contact times and flight
paths than other leading movement models [16, 25,
29].

5

Figure 2: Heatmap of the General Node Profiles for the SLAW dataset.
Darker shades indicate regions with higher node densities.

Node Contacts. For two nodes to make contact, they must
be in the same location at the same time. However, the pe-
riodicity of location entries in the Cabspotting dataset is not
consistent across nodes (or for the same node). We consider
two nodes to have made contact if they are within 10 meters
in a 10 second window. In SLAW, a location entry is gener-
ated every 60 seconds consistently across all nodes; we con-
sider a contact to occur if two nodes are within 10 meters at
the same minute mark.

Timeouts. We use a 12 hour local timeout in simula-
tions with both traces. The global timeout varied between
the two datasets. For the shorter, more dense SLAW move-
ment trace, a three day global timeout is used. The longer,
more sparse Cabspotting trace uses a seven day global time-
out. Finally, simulations begin after an initial delay so that
node profiles can be well seeded; delays of three and seven
days are used for SLAW and Cabspotting, respectively.

Location Profiles. Each node constructs its location pro-
file using a three day window of location histories. Location
profiles are updated daily (e.g., while the phone is charging),
and the current day’s profile represents the location history
of the three previous days.

To generate the general node profile, we select a 10% sam-
ple of nodes from each dataset and use three days worth of
movement data. The 10% sample is excluded from all sim-
ulation experiments. A visualization of the resulting general
node profile for the SLAW dataset is shown in Figure 2.

4.2 Simulation Results
To measure the efficiency of PPBR, we compare our strat-

egy against two probabilistic protocols that do not use loca-
tion information: probabilistic random walk and probabilis-
tic flooding. The probabilistic random walk routing scheme
also has passing and holding phases; however, unlike PPBR,
the random walk does not use location profiles. Instead,
a node accepts a carrier’s advertised message with a fixed
probability of 1/k (i.e., 10%). The random walk protocol
allows us to measure both the effectiveness of using location
information as well as the local threshold selection process.

Additionally, we compare PPBR to a 10% probabilistic
flood in which nodes duplicate the message to a contacted
node with probability 0.1. The flood provides insight into a
worst case for network load – i.e., exponential growth in the

number of duplicate messages. The global and local time-
outs for both random protocols are identical to those used by
PPBR.

Threshold Estimation. As described in Section 3.2, each
node computes its threshold marginal similarity score (τ)
based on the general node profile and its knowledge of the
routing area. Ideally, τ should be chosen such that a mes-
sage is transferred to exactly one of the k nodes that a car-
rier encounters during its passing phase. To determine if our
local, per-node threshold calculations were generating good
thresholds, we looked at the variance of thresholds calcu-
lated at each node for one day in the simulation. Intuitively,
a low variance indicates that nodes are independently able to
reach a consensus as to a good value for τ , without exchang-
ing any information amongst themselves. The average value
for τ was 1.557 and 1.353 for SLAW and Cabspotting, re-
spectively. We found that there is very low variance among
the nodes’ thresholds: 0.011 for SLAW and 0.085 for Cab-
spotting. Similar results were found for other days in the
simulation, and as we show below, these thresholds result in
both low latency and low network load.

Performance Metrics. We evaluate our routing perfor-
mance using the following metrics: delivery rate is the per-
centage of messages that reach the destination address (a
grid square); latency is the amount of time it takes for a
message to be delivered; and network load is the number of
messages in the network at a given time. Ideally, the routing
protocol should deliver messages with a high delivery rate,
low latency, and low network load.

Delivery Rate and Latency. Table 2 lists the delivery
rates and latencies for PPBR, random walk, and probabilis-
tic flooding. Unsurprisingly, flooding offers both the best
latency and delivery rates. (As we show later, it also incurs a
very high network load, making it impractical for networks
of battery-constrained smartphone devices.) PPBR routing
outperforms random walk for both median latency and de-
livery rate. Although the average latency for PPBR using the
Cabspotting dataset is 0.8 hours slower, the median latency
is nearly an hour faster. The skew in the average latency
is caused in part by the higher delivery rate, and that some
messages were delivered later in the simulation after random
walk was no longer delivering messages.

It is worth emphasizing that the delivery rates reported
in Table 2 result from single attempted transmissions. The
sender can increase the delivery rate by sending redundant
copies sufficiently spaced in time to allow different sets of
carriers to deliver the message.

Network Load. The load on the network is measured
as the average number of message duplicates in the system
across all simulations runs. PPBR does not guarantee that
only a single copy of a given message is present in the sys-
tem. Carriers announce a message to k other nodes; ideally,
only one node should accept it. If the message is accepted,

6

Nodes Length Area Contact Rate Waypoints
SLAW [28] 1000 7 days 100 km2 12.62 per hour 150

Cabspotting [34] 536 20 days 326 km2 1.17 per hour n/a

Table 1: Characteristics of the movement data sets.

Cabspotting SLAW
Med/Avg Latency (hrs) Rate Med/Avg Latency (hrs) Rate

PPBR 3.6/6.8 [1.2,4.6] 62.6% 4.2/4.8 [2.6,6.2] 61.8%
Walk-10% 4.4/6.0 [1.6,8.1] 43.4% 5.1/5.5 [2.9,5.2] 48.0%
Flood-10% 2.8/4.1 [1.6,4.4] 99.4% 3.4/3.3 [2.2,4.2] 100.0%

Table 2: Median and Average Latencies (first and third quartiles in
braces) and Delivery Rate.

the carrier retains the message until either it is delivered or a
local timeout occurs. Hence, each message could potentially
have multiple (or zero) duplicates in the system.

Figure 3 plots the number of messages that persist in the
system over time, normalized to the number of senders in
the system (which, in our simulation experiments is always
300). The average number of message copies, computed
over the entire simulation, is shown in the Figure’s key. Note
that the number of message duplicates may be less than one
if either some messages are not accepted by any of the k
encountered nodes, or if all message copies are delivered to
their destinations. As expected, flooding incurs significant
network load, resulting in approximately two orders of mag-
nitude more message copies than PPBR. Although the num-
ber of duplicates is slightly larger for PPBR than our naïve
random walk protocol, the load is easily manageable.

Figure 3 further validates the effectiveness of the thresh-
old values. For both datasets, the number of message copies
remains relatively stable throughout the simulations. The
probabilistic “best-of-k” scheme employed by PPBR incurs
only small network loads, highlighting its scalability and
practicality.

5. SECURITY PROPERTIES
This section analyzes the security guarantees of PPBR in

the presence of adversaries who wish to perform PROFIL-
ING, DE-ANONYMIZATION, and DISRUPTION attacks.

Profiling. All message exchanges in PPBR occur in the
open, and an adversary can observe any exchange in its pres-
ence. However, PPBR offers strong privacy protections agai-
nst PROFILING attacks during a message exchange for both
the node announcing a message as well as the node who re-
ceives, and possibly accepts, the message announcement.

Message Exchange Carrier Protections: An adversary can
determine that a carrier node who advertises a message has
a high marginal similarity to the message’s address; other-
wise, the node would not be advertising the message. More
precisely, the adversary knows that the marginal similarity
for the carrier is lower bounded by the threshold τ .

By design, nodes choose τ such that they should expect
to accept messages addressed to 1/k of the grid squares.
Hence, the acceptance of a message does not necessarily in-
dicate that the message’s address is particularly important
to the node that accepted it. Depending upon the value of
k, a node may be expected to accept messages targeted at
hundreds of grid squares across the routing area. An adver-

sary cannot conclude that a message was accepted because
the message’s address is frequently visited by the advertis-
ing node. Moreover, as we show below, a node may not even
accept a message addressed to a grid square for which it is
very familiar.

The choice of k has privacy and performance implica-
tions, and a clear tradeoff exists: Larger values of k decrease
privacy since nodes accept messages for fewer locations, and
thus an adversary could deduce that these locations are more
likely relevant to the victim node. Conversely, smaller values
of k increase privacy since nodes accept messages to more
locations, further obscuring which are important. Smaller
values of k also incur higher power consumption and net-
work load as more nodes will likely accept (and transfer) the
message. In our simulation studies, we found that k = 10
achieves reasonable privacy while restraining the number of
message transfers, and we use this value for the experiments
described below.

To study this tradeoff further, we determined for each node
the set of addresses (grid squares) that would result in its
acceptance of a message. We then compared this set of ad-
dresses to the nodes’ most frequented locations as defined
in their location profiles. As expected, nodes accepted mes-
sages addressed to 1/k of the grid squares, on average. How-
ever, many of those locations correspond to grid squares that
would be uninteresting to an adversary concerned with PRO-
FILING. If we consider an adversary who is interested in the
most frequented grid squares of a victim node – that is, the
highest value grid squares in the node’s location profile –
these “interesting” grid squares comprise only a small frac-
tion of the total locations for which a node would accept a
message.

This relationship is depicted in Figure 4 (left). The curves
represent the averages across all nodes in the Cabspotting
and SLAW datasets. The x-axis denotes the number of points
an adversary is interested in (i.e., the x grid squares most
frequented by the node). The y-axis plots the fraction of
the locations that are accepted by the node which are of in-
terest to the adversary. For example, using the Cabspotting
dataset, 38% of announced messages belong to the advertis-
ing node’s 800 most frequented locations. If the adversary
is interested in a node’s 200 most frequented grid squares,
just 10% of advertised messages belong to this interest set.
More generally, the more specific the adversary’s interest,
the more difficult it is for him to distinguish the pertinent
message addresses that are announced by a node, and con-
sequently, the more difficult it is to discover the node’s most
frequented locations.

7

 0.01

 0.1

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000 12000

D
u
p
lic

a
te

s
p
e
r

M
e
ss

a
g
e
 (

lo
g
sc

a
le

)

Simulation Time (m)

PPBR (Avg:1.91)
Walk-10% (Avg:1.08)
Flood-10% (Avg:184)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000

D
u
p

lic
a

te
s

p
e
r

M
e

ss
a

g
e

 (
lo

g
sc

a
le

)

Simulation Time (m)

PPBR (Avg:8.16)
Walk-10% (Avg:2.80)

Flood-10% (Avg:788.32)

Figure 3: The number of message copies (“duplicates”) of each message
for (left) Cabspotting and (right) SLAW, and inset, the average.

The adversary’s ability to discern profile information is
further diminished due to our algorithm’s willingness to dis-
card announcements that are targeted at highly frequented
areas. That is, a significant portion of the grid squares that
are most frequented by a node actually have low marginal
similarity. Recall that the marginal similarity is the ratio
of the node’s similarity score to the general node profile’s
similarity score. Hence, if a message is addressed to a grid
square that is often frequented by the node but also highly
frequented according to the general node profile, then the
ratio will not exceed the τ threshold, and the node will never
accept a message addressed there. Consequently, such inter-
esting locations are unobservable and safe from adversarial
analysis.

Figure 4 (right) visualizes this relationship. Again, the
x-axis considers the number of grid squares an adversary
would find interesting for a victim node. The y-axis rep-
resents the fraction of those interesting grid squares a node
would never accept a message for, averaged across all nodes.
For example, consider an adversary interested in the top 200
most frequent locations of a node: In the Cabspotting data
set, 68% of those locations are safe from analysis by an ad-
versary.

Message Exchange Receiver Protections: During the pass-
ing phase, receivers do not acknowledge acceptance (or re-
jection) of a message, and hence an adversary cannot di-
rectly determine its similarity to the message’s destination
address.

An adversary who is able to follow the node for a distance
of at least d can determine whether the message has been ac-
cepted by observing whether or not it is re-advertised by the
node. However, since the node is physically followed, such
a stalking attack inherently leaks the victim’s location in-
formation regardless of the particular routing protocol being
used (and hence, as described in Section 2, stalking attacks
are outside of our threat model). Regardless, if the node is
followed, or if a separate colluding eavesdropper discovers
that the node later advertised the message, then the adver-
sary can conclude that the node accepted the message. In
such cases, the effectiveness of a PROFILING attack against
the receiver is identical to the effectiveness against a carrier
advertising a message (see above).

De-Anonymization. The standard addressing primitive
of HumaNets is geocast, and thus all participants at the ad-

dressed location at the time of delivery should receive the
message. Receiver anonymity is not protected in HumaNets
because an adversary located in the address location trivially
learns the identities of the message recipients by simply ob-
serving them.

However, PPBR provides in-transit anonymity for mes-
sage originators (or senders). An intercepted message, past
the initial hop, cannot be traced to the original sender with-
out completely retracing the message’s path. If an adver-
sary is witness to the initial hop of a message, the originat-
ing sender may be exposed. We note, however, that this is
similar to the level of protection provided by many Internet-
based anonymity systems (e.g., Tor [12]) in which an adver-
sary on the first hop trivially learns the message’s sender.

It is worth noting that message replay attacks in which an
attacker re-injects a message in hopes of discovering its path
are also infeasible. It is highly unlikely a message will take
the same path due to variability in human movement.

Disruption. PPBR also provides protection against DIS-
RUPTION attacks in which an adversary attempts to intercept
messages in the network. If the attacker is able to infiltrate
the network and receive a large portion of the k handoffs for
each message, then the probability that the message will be
transferred to an honest node is reduced. However, such an
attack may also be prohibitively expensive for an adversary
since message exchanges occur whenever two participants
have a chance encounter. Additionally, such an attack may
be mitigated by adjusting the number of passing attempts
(i.e., k) to compensate for the attacker’s presence.

PPBR’s SCALABILITY property also makes it resistant
to denial-of-service attacks in which the attacker attempts
to overwhelm the network’s resources by injecting spurious
messages. Although an attacker may inject wasteful mes-
sages into the HumaNet, the impact of each additional mes-
sage on the network is linear, by design. In comparison,
each additional message in a flooding protocol incurs an ex-
ponential increase in load on the network, and a few injected
messages may be sufficient to overload the network.

6. RELATED WORK

Location-Based Routing. The ability to leverage geo-
graphic information to efficiently route packets has been well
explored in the literature. In many instances, these tech-
niques require participants to announce their locations. For
example, Last Encounter Routing (LER) [18] and
ProPHET [30] expose location information; LER assumes
that the network is sufficiently connected to allow stable and
longstanding paths. The Bubble protocol [21] uses social
networks to efficiently route messages, but allows any party
to discover social relationships. Although these techniques
may efficiently route messages, they are not well-suited for
settings in which the disclosure of location histories and/or
social relationships may be cause for government-imposed
punishment. We desire protocols that efficiently and scal-

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800

F
ra

ct
io

n
 o

f
O

b
se

rv
a
b
le

 I
n
te

re
st

 P
o
in

ts

Num. of Points of Interest

CabSpotting
SLAW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800F
ra

ct
io

n
 o

f
U

n
o

b
se

rv
a

b
le

 I
n

te
re

st
 P

o
in

ts

Num. of Points of Interest

CabSpotting
SLAW

Figure 4: Fraction of Safe Interest Points (left) and Fraction of Interesting
Observations (right).

ably deliver messages while preserving users’ location his-
tories and social relationships.

Location-based routing has also been studied in the con-
text of wearable computing. Of particular relevance is Davis
et al.’s geographic-based routing protocol [10]. There, the
authors use flooding techniques to disseminate messages
when the network’s devices are storage constrained; they
consider a pruning approach in which nodes drop messages
that are addressed to locations that they have not recently
visited. Our routing techniques rely on similar heuristics,
but take a more proactive approach by targeting potential
message carriers who are likely to visit a message’s desti-
nation. Similarly, pocket-switched networks [7, 8, 20] pro-
vide methods of routing messages between pocket-sized de-
vices. However, the protocols are intended for small area
routing (i.e., at the scale of an academic conference) and fo-
cus on reliability. Our protocols are designed specifically for
smartphones, leverage the devices’ ubiquity and location-
awareness, and target city-scale routing.

Location Privacy. There are a number of approaches that
attempt to preserve location privacy. Here, the goal is often
to prevent an adversary from either identifying the source of
an intercepted communication or tracking a node over time.

Several protocols [15, 26, 37, 45] achieve location privacy
by relying on ephemeral pseudoidentities. Such approaches
provide unlinkability by impeding an adversary’s ability to
associate different broadcasts with the same node. Although
these techniques can be used in conjunction with our PPBR
protocol, we assume an adversary who is physically present
at various (but not all) locations in the network and can iden-
tify individuals and associate broadcasts with their senders
(e.g., through physical identification and message triangula-
tion). Similarly, anti-localization techniques [31] that are de-
signed to prevent an adversary from determining a sender’s
location [22] are ineffective in our context in which the ad-
versary physically observes nodes.

A number of location privacy protocols are loosely based
off of AODV [33], a popular routing protocol for decentral-
ized mobile networks (e.g., MANETs). However, such tech-
niques assume a highly connected and mostly static network
in which messages can be quickly forwarded between nodes.
For example, the ALARM [11] routing system privately dis-
seminates topology snapshots to participating nodes,
AO2P [42] assumes mostly static positions and immediate

connectivity between nodes, PRISM [13] assumes a trusted
third party and longstanding paths that can be used to route
traffic, and ODAR [39] relies on source routing. Similarly,
the ANODR [26] system and its extensions [37, 43] enable
anonymous communication in a MANET by establishing
onion-like structures [40] that obscure the identity of the
sender. SDAR [6] also uses onion-like routing, but uses a
“trust management system” in which nodes choose which
peers to route messages towards based on their level of trust
of those nodes.

These protocols assume that nodes are mostly stationary,
communication can occur with low latency, and anonymous
paths can be reused for multiple exchanges. They are not
well-suited for networks of mobile smartphones where im-
mediate connectivity is not available, nodes are highly mo-
bile, and paths cannot be predicted a priori. In contrast, we
desire protocols that take advantage of routine movement
and do not require human operators to change their habits
in order to participate, even if such a requirement limits op-
portunities for exchanging messages. Our setting therefore
requires delay tolerant networks (DTNs) in which messages
are stored and forwarded only during chance encounters.

There are a number of existing DTN protocols that are
similar to HumaNets, but either have limited functionality
or lack HumaNets’ privacy protections. For instance, Ze-
branet [24] uses local information to efficiently exchange
information between sensor nodes in order to track wildlife.
However, the network can route messages only towards fixed
basestations. GeoDTN+Nav [9] is a vehicular ad-hoc net-
work routing scheme that, like HumaNets, relies on location
profiles to deliver messages in a DTN. However,
GeoDTN+Nav requires that at least some nodes follow fixed
paths (e.g., bus routes) or provide their destinations before
travel (e.g., via a car navigation system).

The work that perhaps most closely resembles ours is
Shifka et al.’s protocol [38]. Here, the authors use the heuris-
tic that nodes that share more contexts are more likely to
encounter one another. Like our approach, participants con-
struct profiles that describe frequented locations. To pro-
vide profile confidentiality, their technique relies on public
encryption with keyword search (PEKS) to limit the adver-
sary’s ability to enumerate the contents of a profile. Addi-
tionally, their approach assumes a trusted third party (TTP)
that assigns attribute values (e.g., a frequented location) to
nodes. In contrast, HumaNets does not require a TTP, and
allows nodes to self-determine their profiles.

Extending HumaNets. Aviv et al. introduced the polygon-
intersection protocol for HumaNet routing [3]. Their tech-
nique requires nodes to announce their frequented locations
(i.e., the areas they travel), and consequently leaks signifi-
cant information about the network’s participants. This pa-
per builds off their work by refining the threat model and
introducing novel privacy-preserving decentralized routing
techniques that minimize the exposure of information.

9

7. CONCLUSION
This paper presents probabilistic profile based routing

(PPBR), a novel privacy-preserving geographic messaging
protocol for HumaNets. Designed for networks of smart-
phone devices, our PPBR routing protocol avoids the use of
the cellular network — or any other centralized infrastruc-
ture — and is well-suited for environments in which tradi-
tional communication is subject to monitoring and/or cen-
sorship. PPBR leverages self-determined location profiles to
assist routing while minimizing the disclosure of location in-
formation to outside observers as well as adversaries who in-
filtrate the network. In particular, we demonstrate that PPBR
is resistant to disruption, de-anonymization, and location-
leakage attacks.

Using simulations over real-world and synthetic move-
ment data, we show that PPBR provides reasonable delivery
rates and latency. Unlike flooding approaches, our proba-
bilistic routing algorithm does not require exponential mes-
sage transfers, and is therefore appropriate for networks of
battery-constrained smartphones. Our future work includes
adapting PPBR to provide long-distance (state- and country-
scale) messaging.

References
[1] Udel models, July, 2010. http://www.udelmodels.eecis.udel.

edu/.
[2] 3rd Generation Partnership Project. Universal Mobile Telecommunications Sys-

tem (UMTS); Synchronization in (UTRAN) Stage 2. Technical Specification
Group Services and System Aspects 3GPP TS25.402 v8.1.0, 3rd Generation
Partnership Project, July 2009.

[3] A. J. Aviv, M. Sherr, M. Blaze, and J. M. Smith. Evading Cellular Data Moni-
toring with Human Movement Networks. In USENIX Workshop on Hot Topics
in Security (HotSec), August 2010.

[4] F. Bai, N. Sadagopan, and A. Helmy. IMPORTANT: A Framework to Systemat-
ically Analyze the Impact of Mobility on Performance of Routing Protocols for
Adhoc Networks. In IEEE International Conference on Computer Communica-
tions (INFOCOM), 2003.

[5] N. Bilton. Tracking File Found in iPhones. The New York Times, April 20 2011.
[6] A. Boukerche, K. El-Khatib, L. Xu, and L. Korba. An Efficient Secure Dis-

tributed Anonymous Routing Protocol for Mobile and Wireless Ad Hoc Net-
works. Computer Communications, 28(10):1193–1203, 2005.

[7] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Pocket
Switched Networks: Real-world Mobility and its Consequence for Opportunistic
Forwarding. Technical Report 617, University of Cambridge, Febuary 2005.

[8] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of
Human Mobility on Opportunistic Forwarding Algorithms. IEEE Transactions
on Mobile Computing, 6(6):606–620, 2007.

[9] P. Cheng, J. Weng, L. Tung, K. Lee, M. Gerla, and J. Haerri. GeoDTN+Nav:
A Hybrid Geographic and Dtn Routing with Navigation Assistance in Urban
Vehicular Networks. In Symposium on Vehicular Computing Systems, 2008.

[10] J. A. Davis, A. H. Fagg, and B. N. Levine. Wearable Computers as Packet
Transport Mechanisms in Highly-Partitioned Ad-Hoc Networks. In IEEE Inter-
national Symposium on Wearable Computers, 2001.

[11] K. E. Defrawy and G. Tsudik. ALARM: Anonymous Location-Aided Routing in
Suspicious MANETs. IEEE Transactions on Mobile Computing, 10:1345–1358,
2011.

[12] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation
Onion Router. In USENIX Security Symposium (USENIX), 2004.

[13] K. El Defrawy and G. Tsudik. PRISM: Privacy-friendly Routing in Suspicious
MANETs (and VANETs). In International Conference on Network Protocols
(ICNP), 2008.

[14] N. Fathi. Iran Disrupts Internet Service Ahead of Protests. The New York Times,
February 10 2010.

[15] J. Freudiger, M. H. Manshaei, J.-P. Hubaux, and D. C. Parkes. On Non-
cooperative Location Privacy: A Game-theoretic Analysis. In ACM Conference
on Computer and Communications Security (CCS), 2009.

[16] J. Ghosh, S. J. Philip, and C. Qiao. Sociological Orbit Aware Location Approx-
imation and Routing (SOLAR) in MANET. Ad Hoc Networks, 5(2):189–209,
2007.

[17] D. Gonzales and S. Harting. Can You Hear Libya Now? The New York Times,
March 4 2011.

[18] M. Grossglauser and M. Vetterli. Locating mobile nodes with ease: learning effi-
cient routes from encounter histories alone. IEEE/ACM Trans. Netw., 14(3):457–
469, 2006.

[19] M. Gruteser and D. Grunwald. Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In ACM International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2003.

[20] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot. Pocket
Switched Networks and Human Mobility in Conference Environments. In ACM
SIGCOMM Workshop on Delay-tolerant networking (WDTN), 2005.

[21] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap: Social-Based Forwarding in
Delay Tolerant Networks. IEEE Transactions on Mobile Computing, 99, 2010.

[22] N. Husted and S. Myers. Mobile Location Tracking in Metro Areas: Malnets
and Others. In ACM Conference on Computer and Communications Security
(CCS), 2010.

[23] A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri. Towards Realistic
Mobility Models for Mobile Ad Hoc Networks. In International Conference on
Mobile Computing and Networking (MOBICOM), 2003.

[24] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences
with ZebraNet. In Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-X), Oct. 2002.

[25] M. Kim, D. Kotz, and S. Kim. Extracting a Mobility Model from Real User
Traces. In IEEE International Conference on Computer Communications (IN-
FOCOM), 2006.

[26] J. Kong and X. Hong. Anodr: Anonymous on demand routing with untraceable
routes for mobile ad-hoc networks. In ACM International Symposium on Mobile
Ad Hoc Networking and Computing, 2003.

[27] D. Kotz and T. Henderson. CRAWDAD: A community resource for archiving
wireless data at dartmouth. http://crawdad.cs.dartmouth.edu/.

[28] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. SLAW: A New Mobil-
ity Model for Human Walks. In IEEE International Conference on Computer
Communications (INFOCOM), 2009.

[29] S. Lim, C. Yu, and C. Das. Clustered Mobility Model for Scale-Free Wireless
Networks. In IEEE Conference on Local Computer Networks (LCN), 2006.

[30] A. Lindgren, A. Doria, and O. SchelÃl’n. Probabilistic routing in intermittently
connected networks. In P. Dini, P. Lorenz, and J. de Souza, editors, Service As-
surance with Partial and Intermittent Resources, volume 3126 of Lecture Notes
in Computer Science, pages 239–254. Springer Berlin / Heidelberg, 2004.

[31] X. Lu, P. Hui, D. Towsley, J. Pu, and Z. Xiong. Anti-localization Anonymous
Routing for Delay Tolerant Network. Computer Networks, 54(11):1899 – 1910,
2010.

[32] P. Mann. Timing Synchronization for 3G Wireless. EE Times Asia, December
2004.

[33] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561, IETF, 2003.

[34] M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser. A Parsimonious
Model of Mobile Partitioned Networks with Clustering. In Conference on COM-
munication Systems and NETworkS (COMSNETS), 2009.

[35] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong. On the Levy-Walk Nature of
Human Mobility. In IEEE International Conference on Computer Communica-
tions (INFOCOM), 2008.

[36] M. Richtel. Egypt Cuts Off Most Internet and Cell Service. The New York
Times, January 28 2011.

[37] S. Seys and B. Preneel. ARM: Anonymous Routing Protocol for Mobile Ad hoc
Networks. In International Conference on Advanced Information Networking
and Applications (AINA), 2006.

[38] A. Shikfa, M. Onen, and R. Molva. Privacy and Confidentiality in Context-
Based and Epidemic Forwarding. Computer Communications, 33(13):1493–
1504, 2010.

[39] D. Sy, R. Chen, and L. Bao. ODAR: On-Demand Anonymous Routing in Ad
Hoc Networks. In IEEE International Conference on Mobile Adhoc and Sensor
Systems (MASS), 2006.

[40] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous Connections
and Onion Routing. In IEEE Symposium on Security and Privacy (Oakland),
1997.

[41] M. Wegener. Operational urban models state of the art. Journal of the American
Planning Association, 60(1):17–29, 1994.

[42] X. Wu and B. Bhargava. AO2P: Ad Hoc On-Demand Position-Based Private
Routing Protocol. IEEE Transactions on Mobile Computing, 4:335–348, 2005.

[43] L. Yang, M. Jakobsson, and S. Wetzel. Discount Anonymous On Demand Rout-
ing for Mobile Ad hoc Networks. In ICST Conference on Security and Privacy
in Communication Networks (SecureComm), 2006.

[44] A. C. Yao. Protocols for Secure Computations. In Symposium on Foundations
of Computer Science (FOCS), 1982.

[45] Y. Zhang, W. Liu, W. Lou, and Y. Fang. MASK: Anonymous On-Demand Rout-
ing in Mobile Ad Hoc Networks. IEEE Transactions on Wireless Communica-
tions, 5(9):2376–2385, September 2006.

10

CIS 380 - Project 2 - Fall 2011

CIS 380 Project 2
PennOS: UNIX-like Operating System Simulation

“UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.”
Dennis Ritchie

Adam Aviv∗

with Vin Mannino, Thanat Owlarn, Seth Shannin, and Kevin Xu

MILESTONE: Nov. 9-11
DUE: Nov. 30 @ 10pm

Demos: Dec. 1-2

Directions
This is a group project. You must work in groups of four. You may reuse code from previous projects, but
only code you wrote.

Overview
In this assignment you will implement PennOS, your own UNIX-like operating system. PennOS is designed
around subsystems that model those of standard UNIX. This will include programming a basic priority
scheduler, flat file system, and user shell interactions. Unlike a real operating system, you will not be
required to actually boot on hardware; rather, your PennOS will run as a guest OS within a single process
running on a host OS.

How to use this document

The following specification provides a road map for completing this project; however, as you develop your
code, you may find it necessary to deviate from the specification. In particular, you will likely find it use-
ful/necessary to change the type definitions of some of the functions to better match your development,
or provide additional shell/user level functions to support debugging. Not only is this encouraged, but it
is expected. If you are ever in doubt about a design decision, ask your friendly TAs, and be sure to document
such changes in your README and companion document.

∗Based on previous projects written by Sandy Clark & Micah Sherr, who based their version on a more previous versions by
Stefan Miltchev, Eric Cronin, Guarav Shah, Hee Hwan Kwak, Stuart Eichert, Scott Raven, Jon Kaplan, Robert Spier, & Dianna Xu

Compiled 2011-12-16 10:04

CIS 380 - Project 2 - Fall 2011
1 Specification

There are two states in which an operating system exists: (1) kernel land and (2) user land. During execution,
an operating system switches between these two states continuously. As an example, consider what happens
when a program issues a system call. First, the system call is executed in user land which hits a hook; that is,
the running process actually calls the system call. Next, the operating system must handle the system call,
switching from user to kernel land. Once the system call completes, the operating system returns control to
the calling process, returning back to user land.

In the previous projects, you have interacted with the operating system at the user land level, and in this
project, you will take a peak behind the curtain at kernel land. Well, not exactly, but you will simulate the
basic functionality of an operating system by programming your own operating system simulator PennOS.
Using the ucontext library, you will implement a basic priority scheduler; additionally, you will imple-
ment a flat file system for your operating system to mount, and a basic shell and programming API for a
user to interact with your operating system.

Unlike a real operating system, your PennOS is not required to boot on hardware (or handle devices in
general); instead, it will run as a single process on a host OS. The ucontext library is similar to a threading
API in that allows one process to split its resources across multiple instances. ucontexts do not provide
a scheduler like you may be used to with traditional threading, and your first task will be implementing a
SIGALRM-based scheduler for context switching.

Another critical part of an operating system is handling file reads and writes. Your operating system
will mount a single file system, FlatFAT: a simple file system implementation based on FAT. Your FlatFAT
implementation will be stored within a single file on the host file system, and will be mounted by PennOS
in a loopback like manner. Additionally, unlike traditional file systems, FlatFAT is only required to handle
files within a single top level directory. You are required to allow the creation, modification, and removal of
files under the top level directory.

The last part of your operating system is providing user land interaction via a simple shell. You will
program this shell using the user land system calls providing by PennOS. Your shell will provide job con-
trol, stdin/stdout redirection, and a functional set of built-in commands for testing and exploring your
operating system.

One last note: This is a long and complex project that will take you many, many hours to complete.
This document can only provide you with a primer of the innumerable challenges you will face; read it
carefully, but be sure to use other resources as well. In particular, read the manual pages, and ask questions
of your friendly TAs. Likely, this will be the largest program you will write as an undergraduate student, so
divide and conquer and plan ahead so that the pieces fit together. Remember, a lot of small, easy programs
equal one large, complex program.

1.1 Function Terminology

Your operating system will provide a number of different functions and interfaces. The following symbols
indicate how the functions are to be used:

• (K): indicates a kernel level function that may only be called from the kernel side of the operating
system.

• (U): indicates a user level function that may only be called from the user side of the operating system.
These are your operating system’s system calls.

• (S): indicates a built in program that can be called directly from the shell.

CIS 380 - Project 2 - Fall 2011
Keep in mind that your implementations need not match the function definitions in this document ex-

actly. Although you are required to meet the core functionality described herein, the function definitions
provided are suggestions: You may find it useful/necessary to pass extra parameters to some of the
functions we describe. You may also find it useful to add additional kernel/system/user level functions
as you see fit as long as they are in the spirit of the assignment.

1.2 PennOS Processes/Threads

Your PennOS operating system will run as a single process on the host OS (e.g., the speclab machine). That
is, each of the “processes” in PennOS is really the same process as PennOS according to the host operat-
ing system, but within PennOS, each process will be separated into context threads that are independently
scheduled by PennOS. To accomplish this task you will be using the ucontext library: If you are issuing
calls to fork(2), exec(2), or wait(2), you are doing something very wrong. Despite being
context threads1, your operating system will treat them like processes and will organizing them into process
control blocks (or PCB’s).

A PCB is a structure that describes all the needed information about a running process (or thread).
One of the entries will clearly be the ucontext information, but additionally, you will need to store the
thread’s process id, parent process id, children process ids, open file descriptors, priority level, etc. Refer to
Steven’s Advanced Programming in the UNIX Environment and Tanenbaum’s Modern Operating Systems
for more information about data normally stored in a PCB. You must describe your PCB structure in your
README.

1.2.1 Process Related Required Functions

Your operating system must provide the following user level functions for interacting with PennOS process
creation:

• p spawn(void * func) (U) will fork a new thread that retains most of the attributes of the
parent thread (see k process create). Once the thread is spawned, it will execute the function
referenced by func.

• p kill(int pid, int signal) (U) kill the thread referenced by pid with the signal signal.

• p wait(int mode) (U) set the calling thread as blocked (and do not return) until a child of the
calling thread changes state. p wait() returns a structure with two fields: int pid -
the process id of the child thread that changed state, and int status - indicating the state of
the child. The mode argument should be used to indicate a NOHANG condition. In this case, p wait
should not block and should return NULL immediately if there are no child threads to wait on. If the
calling thread has no children, p wait should return NULL immediately.

• p exit() (U) exit the current thread unconditionally.

Additionally, your operating system will have the following kernel level functions:

• k process create(pcb t * parent) (K) create a new child thread and associated PCB. The
new thread should retain much of the properties of the parent. The function should return a reference
to the new PCB.

1We use “context” and “thread” interchangeably in this document to describe a PennOS process.

CIS 380 - Project 2 - Fall 2011
• k process kill(pcb t * process, int signal) (K) kill the process referenced by process

with the signal signal.

• k process terminate(pcb t * process) (K) called when a thread returns or is terminated.
This will perform any necessary clean up, such as, but not limited to: freeing memory, setting the
status of the child, etc.

1.2.2 Zombies and Waiting

As processes complete, it may not be the case that their parent threads can wait on them immediately. If that
is the case, you must queue up these threads so that the parent may wait on them in the future. These threads
are Zombies2. You will likely have a zombie queue for each thread, referenced in the PCB. If at any time
the parent thread exits without waiting on zombie children, the zombie children should immediately die, as
well as non-zombie children threads. Note, this is similar to how INIT inherits orphan child processes and
kills them off.

Additionally, as noted above, other child process state changes can cause a p wait() to return. In
UNIX, a child process that transitions from running to stopped would issue a SIGCHLD signal. Your op-
erating system also should have functionality for parent process to learn of similar state changes. In your
PennOS kernel land implementation of p wait() you will find it useful to maintain other queues of “wait-
able” children, not just zombie children.

1.2.3 Signals in PennOS

Your operating system will not have traditional signals and signal handlers. (However, the host operating
system may deliver signals that you must handle.) Instead, signaling a PennOS process indicates to PennOS
that it should take some action related to the signaled thread, such as change the state of a thread to stopped
or running. Your operating system will minimally define the following signals:

• S SIGSTOP: a thread receiving this signal should be stopped

• S SIGCONT: a thread receiving this signal should be continued

• S SIGTERM: a thread receiving this signal should be terminated

If you would like to add additional signals, be sure to document them and their functionality in your
README file.

1.2.4 Process Statuses

PennOS will provide at least the following user level functions/macros that will return booleans based on
the status returned from p wait.

• W WIFEXITED(status): return true if the child terminated normally, that is, by a call to p exit
or by returning.

• W WIFSTOPPED(status): return true if the child was stopped by a signal.

• W WIFCONTINUED(status): return true if the child was continued by a signal.
2Mmmm ... brains.

CIS 380 - Project 2 - Fall 2011
• W WIFSIGNALED(status): return true if the child was terminated by a signal, that is, by a call to
p kill with the S SIGTERM signal.

1.3 Programming with User Contexts

ucontext is a basic thread-like library provided on most UNIX systems. Essentially, it allows a user to
isolate some portion of code execution within a context and switch between them. On the course website,
we have provided a sample program that demonstrates how to switch between contexts in a round robin
fashion. A high-level description of context creation and execution is provided below, and more information
can be found in the manual.

First, a ucontext structure must be initialized with a call to getcontext(2). The structure will
have the following fields (and more not shown):

typedef struct ucontext {
struct ucontext *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
...

} ucontext_t;

You still need to set the structure values above: uc link is a the next context to run when this context
completes3; uc sigmask is a signal mask for blocking signals in this context; and, uc stack is the
execution stack used by this context. For a description of the uc stack structure reference the man-
ual for sigaltstack(2). Setting these values is still insufficient to executed the context, and you
still need to set up the function that will be called when the context is set or swapped. This done by a
call to makecontext(2), and it is well described in the manual. A context is switched in using either
setcontext(2) or swapcontext(2), which either directly sets the context, or sets and also saves the
state of the running context, respectively.

We are leaving much of the details for you to learn on your own, but a good place to start is with a Hello
World program for ucontext. We have provided one in the appendix (see Section ??). Try editing that
programming and adding new features. Here are some mini-exercise you might want to try: What happens
if you want to switch back to the main program after printing “Hello World”? Can you write a program that
alternates between two functions indefinitely? What happens when a signal is delivered? How do signals
affect the execution of a context? How do you track the current context?

1.4 Priority Scheduler

Perhaps the most critical part of any operating system is the scheduler. This is the part of your operating
system that chooses which program to run next. As described in class, most operating systems, including
Linux, use a priority queue based scheduler. In your PennOS, you will also implement a priority scheduler,
although it will be a much more simplified version with a fixed quanta.

1.4.1 Clock Ticks

You will schedule a SIGALRM signal to be delivered to your operating system every 100 milliseconds. We
refer to this event as a clock tick, and on every clock tick the operating system will switch in and execute

3What might you want to set uc link to?

CIS 380 - Project 2 - Fall 2011
the scheduler, which will then choose which process to run next. This may be any process that is runnable
(i.e., not zombied, blocked, nor stopped) to execute, including the shell. To set an alarm timer at millisecond
granularity, refer to setitimer(2). Note that since your operating system is relying on SIGALRM,
non-kernel functions may not block SIGALRM.

1.4.2 Priority Queues

Your operating system will have three priority levels: -1, 0, 1. As in standard UNIX, the lower a priority
level, the more heavily the “process” should be scheduled. Child threads created by k process create
should have a default priority level of 0, unless otherwise specified. For example, the shell should execute
with priority level -1 because it is interactive.

Your priority queues will be relative. Threads scheduled with level -1 should run 1.5 times more often
as threads scheduled with priority level 0, which run 1.5 times more often as threads scheduled with priority
level 1. Within each priority queue, the threads are selected in a round robin format, and each queue must
be implemented as a linked list. You may reuse your linked list implementation from previous projects.
You must also ensure that no thread is starved.

As an example, consider the scheduling of the following threads with these priority levels: (1) shell,
priority level -1; (2) sleep, priority level 0; and (3), cat, priority level 0. With a 100 millisecond quanta,
after 10 seconds, what is the proportion of quanta for each process? First, there are 10 quanta per second,
which means a total of 1000 quanta in 10 seconds. Of the available quanta, 600 quanta will be used for
priority level -1, (that is the shell), since it must be scheduled 1.5 times as often. Of the remaining 400
quanta, 200 quanta will be used for sleep, and 200 quanta for cat.

To verify the correctness of your scheduler, you will implement a detailed logging facility that will
generate a log entry for every clock tick. The specification of the log format is described in Section ??;
however, we will provide you with a tool to parse and analyze your log. The same tool will be used in
grading your shell.

1.5 Running vs. Stopped vs. Blocked vs. Zombied

Threads can exists in four states: running, stopped, blocked, or zombied. A running thread may be sched-
uled; however, a stopped, blocked, or zombied thread should not be. A thread should only become stopped
if it was appropriately signaled via p kill. A thread should only be blocked if it made a call to p wait
or p sleep (see below).

1.5.1 Required Scheduling Functions

Your operating system will provide at least the following user level functions for interacting with the sched-
uler:

• p nice(int pid, int priority) (U) set the priority level of the thread pid to priority.

• p info(int pid) (U) return a structure representing standard information about a thread pid.
The structure must contain the following fields: int status : indicating the status of the thread;
char * command : the name of the command executed by the thread (e.g., cat);
int priority : indicating the priority level of the thread pid. You may supply additional fields,
but be sure to document the structure in your README.

CIS 380 - Project 2 - Fall 2011
• p sleep(int ticks) (U) set the thread pid to blocked until ticks of the clock occur, and then

set the thread to running. Importantly, p sleep should not return until the thread resumes running;
however, it can be interrupted by a S SIGTERM signal.

1.6 Flat File System

Your operating system will mount its own file system based on a FAT (file allocation table) file system, Flat-
FAT. Unlike traditional operating systems, all files will be allocated under a single, top level file directory,
which greatly simplifies things. (For references, see Chapter 4.3 in Tanenbaum 3rd edition, pages 277 and
278.)

1.6.1 FATs and File System Blocks

Conceptually, you can think of a file as a bunch of fixed-size memory blocks, and a file system as a way to
find the right blocks for a file in the right order. A FAT (or File Address Table) provides a simple way to do
this. Placed at the beginning of a file system, the FAT is a fixed size and can be easily mapped into memory.
This is also its greatest disadvantage: being of fixed size, the FAT also limits the size of the file system.

Your FAT will contain 512 entries, each row consisting of a short (1 byte), thus resulting in a table that is
1024 bytes wide. Each file block will be 1KB (1024 bytes) in size4. In a FAT, each table entry is a reference
to the next table entry in the FAT. For example:

Physical | Link
---------+-------

0 | -1 <--- directory block
---------+-------

1 | 4 <--- start of File A
---------+-------

2 | 3 <--- start of File B
---------+-------

3 | -1 <--- last block of File B
---------+-------

4 | 5 <--- second block of File A
---------+-------

5 | -1 <--- last block in File A
---------+-------

... | ...

The first block in a FlatFAT will always reference the directory file. The directory file is like any other file,
but it stores a linked list encoding of all the files in the file system. The structure of the encoding is as
follows:

struct node {
struct node * next; //next file in file system
char[256] fname; //name of the file, limited in size
unsigned int size; //size of the file
short fstart; //FAT entry for this block (1 byte wide)

}

4How large can the file system be?

CIS 380 - Project 2 - Fall 2011
By iterating over the directory file, all files in the file system can be enumerated. To find the block in the file
system using a FAT entry, you will use fseek(3). For example, given a FAT entry for the value 5, you
can find that block in the file containing your FlatFAT by the following call to fseek:

fseek(flatfat_file, FAT_SIZE+5*BLOCK_SIZE, SEEK_SET)

where FAT SIZE is the size of the FAT table, and BLOCK SIZE is the size of a file block.

1.6.2 Formatting FlatFAT

Your file system will exist as a single flat file on the host OS, which must first be formatted. You will provide
a separate program called mkFlatFAT that will properly format a file as a FlatFAT. Additionally, we will
provide two programs that should be capable of parsing your formatted file system, which you are free to
use to test your implementation. The first program is called lsFlatFAT, which will list all the files on a
FlatFAT, similar to calling ls -l. The second program is called catFlatFAT, which will act like the
cat program, except it will act on a FlatFAT file system.

1.6.3 Loading/Mounting FlatFAT

When loading/mounting your FlatFAT you will likely find it useful to mmap(2) the FAT portion of the file
directly into memory. This way you will have copy-on-write for free. Here is a code snippet (minus error
checking) to get you started on this process:

#define 1024 FAT_WIDTH

(. . .)

typedef short FAT_t;

int fat_fd;
FAT_t * fat;

fat_fd = open(flatfat_fs,O_RDWR);
mmap(fat_t, FAT_WIDTH, PROT_READ | PROT_WRITE, MAP_SHARED, fat_fd, 0);

Now, fat references an array, and you can proceed by loading the root directory via a function call such as
load root(fat[0]).

1.6.4 File System and Operating System Interaction

The role of the operating system is to protect the file system from corruption as well as manipulate it by
reading, writing, and deleting files. Internally, the operating system will store a reference to a file descriptor
(an integer) for each open file, as well as a structure indicating the mode for the file and relevant file pointers
indicating where subsequent reads and writes should take place. The user side will reference a file by its file
descriptor and manipulate the file via the user level interface described below.

Note that the file system-related system calls are abstraction layers and should not care about the format
of the underlying file system. That is, consider what must occur when an operating system has mounted
multiple file systems of different types. When there is a call to read(2) for a particular file descriptor,
the operating system will determine on which file system variant the file lives (e.g., FAT32, ext3, etc.)

CIS 380 - Project 2 - Fall 2011
and then call the appropriate file system dependent function to perform the read operation (which usually is
provided by module).

PennOS must work in a similar way, particularly when considering how to handle the stdin and
stdout file descriptors. Essentially, PennOS must manipulate two types of file descriptors, those for
FlatFAT and those for stdin and stdout. A user level program should be able to write to stdout
using the same interface as it would write to a FlatFAT file. If a user level program is calling read(2),
then you are doing something wrong.

1.6.5 Required File System Related System Calls

Your operating system will provide at least the following functions for file manipulation:

• f open(const char * fname, int mode) (U) open a file name fname with the mode
mode and return a file descriptor. The allowed modes are as follows: F WRITE - writing and reading,
truncates if the file exists, or creates it if it does not exist; F READ - open the file for reading only,
return an error if the file does not exist; F APPEND - open the file for reading and writing but does not
truncate the file if exists; additionally, the file pointer references the end of the file. f open returns 0
on success and a negative value on error.

• f read(int fd, int n) (U) read n bytes from the file referenced by fd. On return, f read
returns the number of bytes read, 0 if EOF is reached, or a negative number on error.

• f write(int fd, const char * str, int n) (U) write n bytes of the string referenced
by str to the file fd and increment the file pointer by n. On return, f write returns the number of
bytes written, or a negative value on error.

• f close(int fd) (U) close the file fd and return 0 on success, or a negative value on failure.

• f unlink(const char * fname) (U) remove the file

• f lseek(int fd, int offset, int whence) (U) reposition the file pointer for fd to the
offset relative to whence. You must also implement the constants F SEEK SET, F SEE CUR,
and F SEEK END, which reference similar file whences as their similarly named counterparts in
lseek(2).

You may require kernel level functions as well. Be sure to document them in your code and README
file.

1.7 Shell

Once PennOS is booted (i.e., executed from the host OS), it will execute a shell. You will program this shell
using the PennOS user interfaces described above. Although there is not strong separation between user and
kernel land, you may only use the user level functions to program your shell. That is, you may only use
functions indicated with a (U).

The shell is like any other ucontext thread running in PennOS and should be scheduled as such,
except it will always have a priority level of -1. Unlike traditional shells, it is not capable of running
arbitrary programs; instead you will provide built-in programs to execute within a user context. Below are
the following features your shell should provide:

CIS 380 - Project 2 - Fall 2011
• Synchronous Child Waiting: PennOS does not provide a means to perform asynchronous signal han-

dling; instead, you will use a synchronous signal handler. Before prompting for the next command,
your shell will attempt to wait on all children using p wait.

• Redirection: Your shell must handle >, <, and >> redirection; however, you are not required to have
pipelines.

• Parsing: You must parse command line input, but you may use your previous implementation, or the
parser provided in the previous project.

• Terminal Signaling: You should still be able to handle signals like CTRL-Z and CTRL-C, and neither
should stop nor terminate PennOS. Instead, they must be properly relayed to the appropriate thread
via the user land interface. PennOS should shutdown when the shell exits (e.g., when the shell reads
EOF).

• Terminal Control of stdin: Just as before, you must provide protection of stdin; however, you
cannot use tcsetpgrp(2) since PennOS executes as a single process on the host OS process.
Instead, your OS should have a way to track the terminal-controlling process. Functions that read
from stdin (e.g., cat), should be stopped (by them sending a S SIGSTOP) signal if they do not
have control of the terminal.

1.7.1 Shell Built-ins

The following shell built-ins should run as independently scheduled PennOS processes (indicated by (S*)).
Additionally, you must provide three of your own built-in commands of your own choosing. The only
requirement is that they must use a call to the user level interface and be reasonably interesting. Describe
these three commands in your README and companion document.

• cat [fname] (S*) cat a file to stdout

• nice priority command [arg] (S*) set the priority level of the command to priority
and execute the command

• sleep n (S*) sleep for n seconds

• busy (S*) busy wait indefinitely

• ls (S*) list all files in the file system and relevant information

• touch file (S*) create a zero size file file if it does not exist

• rm file (S*) remove a file file

• ps (S*) list all running processes on PennOS

The following shell built-ins should be run as the shell; that is, they should each execute as a shell sub-routine
rather than as an independent process.

• nice pid priority pid (S) adjust the nice level of process pid to priority priority

• man (S) list all available commands

CIS 380 - Project 2 - Fall 2011
• bg [pid] (S) continue the last stopped thread or the thread pid

• fg [pid] (S) bring the last stopped or backgrounded thread to the foreground or the thread specified
by pid

• jobs (S*) list current running processes in the shell

• logout (S) exit the shell, and shutdown PennOS

1.8 PennOS Logging

You are required to provide logging facilities for your scheduler and kernel level functionality. The logs you
produce will be used for grading, but you should also use the logs as part of your debugging and develop-
ment. Any additional logging events you report should fit the formats below and should be documented in
your README and companion document.

We will also provide a python script that parses your log files and reports some vital information. You
may edit and modify this script as you need, but be sure to document such changes in your README.

All logs will have the following set format:

[ticks] OPERATION ARG1 ARG1 ...

Where ticks is the number of clock ticks since boot, OPERATION is the current scheduling procedure
(e.g., swapping in a process), and the ARGS are the items being acted upon in the procedure. Your log file
should be tab delimited. The following events should be logged with the following formats.

• Schedule event: The scheduling of a process for this clock tick

[ticks] SCHEDULE PID QUEUE PROCESS_NAME

• Process life-cycle events: The creation and completion stages possible for a process.

[ticks] CREATE PID NICE_VALUE PROCESS_NAME
[ticks] SIGNALED PID NICE_VALUE PROCESS_NAME
[ticks] EXITED PID NICE_VALUE PROCESS_NAME
[ticks] ZOMBIE PID NICE_VALUE PROCESS_NAME
[ticks] ORPHAN PID NICE_VALUE PROCESS_NAME
[ticks] WAITED PID NICE_VALUE PROCESS_NAME

Regarding process termination states, if a process terminates because of a signal, then the SIGNALED
log line should appear. If a process terminates normally, then the EXITED log line should appear.

• Nice event: The adjusting of the nice value for a process

[ticks] NICE PID OLD_NICE_VALUE NEW_NICE_VALUE PROCESS_NAME

• Process blocked/unblocked: The (un)blocking of a running process

[ticks] BLOCKED PID NICE_VALUE PROCESS_NAME
[ticks] UNBLOCKED PID NICE_VALUE PROCESS_NAME

• Process stopped/continue: The stopping of a process

CIS 380 - Project 2 - Fall 2011

[ticks] STOPPED PID NICE_VALUE PROCESS_NAME
[ticks] CONTINUED PID NICE_VALUE PROCESS_NAME

1.9 Arguments to PennOS

PennOS flatfs [schedlog]

If schedlog is not provided, logs will be written to a default file named log that will be created if it does
not exits. Note that this log file lives on the host OS and not within a flatFAT. The flatfs argument is
required and refers to the host OS file containing your FlatFAT file system.

2 Acceptable Library Functions

In this assignment you are not restricted in your use of library functions. Of course, if you use functions
that are not in the spirit of this assignment, e.g., fork(2), then you will receive a ZERO.

3 Error Handling

As before, you must check the error condition of all system calls for the host OS. Additionally, you must
provide an error checking mechanism for the PennOS system calls. You may find it useful to leverage
perror(3) mechanisms by setting the global errno value appropriately depending on the errors you
encounter. In your companion document, you must describe the errno values each system call could
set.

4 Companion Document

In addition to the standard README file, you are also required to provide a companion document for your
PennOS. This document will contain all the documentation for all PennOS system calls, their error condi-
tions, return values, etc. You can consider the man pages as a guide for the kind of information expected in
your companion document. You should have the companion document completed by the milestone meeting,
and we will only accept submission of companion documents in PDF format. If you submit in any other
format, you will receive a 0 on that part of the project.

5 Memory Errors

Unfortunately, valgrind and ucontext do not play nice together; however, this does not mean you
should not check your code for memory leaks and violations. As before, code with memory leaks and
memory violations will be subject to deductions.

CIS 380 - Project 2 - Fall 2011
6 Developing Your Code

CIS 380 students are notorious for crashing eniac in creative ways, normally via a “fork-bomb.” This always
seems to happen about two hours before a homework deadline, and the result is chaos, not just for our class,
but for everyone else using eniac.

This year CETS has asked us to lay out some guidelines. Really just one guideline: Do not develop
your code on eniac. Instead you should use the SpecLab for development. SpecLab is a collection of older
desktops that run the same linux variant as eniac, and most importantly, you can crash them as much as you
want without causing too much chaos.

You access SpecLab remotely over ssh. There are roughly 50-60 SpecLab machines up at any time.
When you are ready to develop, choose a random number between 01 and 50, or so, and then issue this
command:

bash# ssh specDD.seas.upenn.edu

where DD is replace with the number you chose. If that machine is not responding, then add one to that
number and try again. Not all SpecLab machines are currently up, but most are.

You must be on SEASnet to directly ssh into SpecLab. The RESnet (your dorms) is not on SEASnet,
but the machines in the Moore computer lab are. If you are not on SEASnet, you may still remotely access
SpecLab by first ssh-ing into eniac and then ssh-ing into SpecLab.

You may develop your code on your personal machine. If you run a Unix variant, such as Ubuntu
Linux, then you can develop your code locally. Although Mac OSX is BSD-like, there are enough differ-
ences in OSX that we advice against developing on it. More explicitly, the ucontext library does not work
on Macs. Regardless of where you develop your code, it will be graded on the SpecLab Linux installation,
and your program must work as specified there.

7 What to turn in

You must provide each of the following for your submission, no matter what. Failure to do so may reflect
in your grade.

1. README file. In the README you will provide

• Your name and eniac username

• A list of submitted source files

• Extra credit answers

• Compilation Instructions

• Overview of work accomplished

• Description of code and code layout

• General comments and anything that can help us grade your code

2. Companion Document describing your OS API and functionality. Only PDF submissions will be
accepted.

3. Makefile. We should be able to compile your code by simply typing make. If you do not know
what a Makefile is or how to write one, ask one of the TA’s for help or consult one of many on-line
tutorials.

CIS 380 - Project 2 - Fall 2011
4. Your code. You may think this is a joke, but at least once a year, someone forgets to include it.

8 Submission

Submission will be done electronically via eniac’s turnin command. turnin will not work from one of
the lab machines in Moore 100 or on the SpecLab machines. You must be logged into eniac. This should
not be an issue because your home directory is NFS mounted.

To submit, place all relevant code and documents in a directory named, username-username-username-
username-project2. You must organize your code into directories as follows:

• project2/bin - all compiled binaries should be placed here

• project2/src - all source code should be placed here

• project2/doc - all documentation should be place here

• project2/log - all PennOS logs should be placed here

Your code should compile from the top level directory by issuing the make command.
To submit your code, issue this command on the directory:

turnin -c cis380 -p project2 username-username-username-username-project1

9 Grading Guidelines

Each group will receive three grade entries for this project: A pass/fail grade for the project milestone and
demo, and a numeric grade for the development. Poor performance in the milestone or demo may affect
your numeric grade. In particular, we are expecting that your group has made significant progress by the
milestone. That is, you should be more than 60% complete on each of the project parts and have PennOS
code that runs and at least schedules dummy programs..

Each team will receive a group grade for the development; however, individual grades may differ. This
can occur due to lack of individual effort, or other group dynamics. In 99% of cases, everyone on a team
will receive the same grade. Below is the grading guideline.

• 10% Documentation

• 45% Kernel/Scheduler

• 30% File System

• 15% Shell

Please note that general deductions may occur for a variety of programming errors including memory vio-
lations, lack of error checking, poor code organization, etc. Also, do not take the documentation lightly, it
provides us (the graders) a road-map of your code, and without it, it is quite difficult to grade the implemen-
tation.

Your programs will be graded on the SpecLab machines, and must execute as specified there. Although
you may develop and test on your local machine, you should always test that your program functions prop-
erly there.

CIS 380 - Project 2 - Fall 2011
10 Attribution

This is a large and complex assignment, using arcane and compactly documented APIs. We do not expect
you to be able to complete it without relying on some outside references. That said, we do expect you to
struggle a lot, which is how you will learn about systems programming, by doing things yourself.

The primary rule to keep you safe from plagiarism/cheating in this project is to attribute in your doc-
umentation any outside sources you use. This includes both resources used to help you understand the
concepts, and resources containing sample code you incorporated in your shell. The course text and APUE
need only be cited in the later case. You should also use external code sparingly. Using most of an example
from the pipe(2) man page is ok; using the ParseInputAndCreateJobAndHandleSignals()
function from Foo’s Handy Write Your Own Shell Tutorial is not (both verbatim, and as a closely followed
template on structuring your shell).

CIS 380 - Project 2 - Fall 2011
A User Context “Hello World”

#include <ucontext.h>
#include <sys/types.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#define STACKSIZE 4096

void f(){
printf("Hello World\n");

}

int main(int argc, char * argv[]){

ucontext_t uc;
void * stack;

getcontext(&uc);

stack = malloc(STACKSIZE);

uc.uc_stack.ss_sp = stack;
uc.uc_stack.ss_size = STACKSIZE;
uc.uc_stack.ss_flags = 0;

sigemptyset(&(uc.uc_sigmask));

uc.uc_link = NULL;

makecontext(&uc, f, 0);

setcontext(&uc);
perror("setcontext"); //setcontext() doesn’t return on success

return 0;
}

