
CS41 Lab 2: Brute Force and Reductions
September 7, 2022

In typical labs this semester, you’ll be working on a number of problems in groups of 3-4 students.
You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure
space to discuss algorithm design, and to gain experience collaborating with others on algorithm
design and analysis. However, it will be common to have some overlap between lab exercises and
homework sets.
For Lab 2, you will explore the first two algorithm design techniques of the semester: Brute Force,
and Reductions.

Brute Force. Brute Force is an algorithm design technique that works by enumerating all possible
solutions to a problem, checking to see if each possible solution is an actual solution. For example,
a brute-force sorting algortihm might enumerate over all possible ways of ordering n elements, and
for each such way checking to see if the List is sorted. Brute force algorithms tend to be simple
and slow, but sometimes they’re the fastest known solutions to a problem.

Reductions. In computer science, a reduction is a way of solving one problem using another.
Imagine having an algorithm for problem B, and using that algorithm as a subroutine in an algo-
rithm that solves problem A. We say that ”problem A reduces to problem B” or that we have a
reduction from problem A to problem B. Reductions are a very deep algorithmic technique that
can be used to make connections between problems that might initially look very very different.

1. Brute Force Stable Matching. Design and analyze a Brute Force algorithm that solves
Stable Matching. Argue at a high level that your algorithm works. What is the runtime of
your algorithm?

2. Sorting to Half-Sorting. In the half-sort problem, you’re given an array of n integers
and must return an array that has the first ⌈n/2⌉ integers in sorted order. For example, if
your array is A = [5, 9, 1, 2, 6, 3], then a valid output of half-sort(A) might be [1, 2, 3, 9, 5, 6]
since 1, 2, 3 are the least elements of A.

� Reduce the sorting problem to half-sort. i.e., imagine you have an algorithm A for
half-sort, and use it to design a sorting algorithm.

� Reduce half-sort to the sorting problem. i.e., imagine you have a sorting algorithm
B, and use it to design an algorithm for half-sort.

� Now, suppose that your friend claims to have an algorithm for half-sort that runs in
10n time in the worst case. What is the runtime of your sorting algorithm? Is 10n a
reasonable running time for half-sort?

3. Hipster Coffee Tours. A group of n Portland hipsters H = {h1, . . . , hn} are touring a set
of local coffee shops C = {c1, . . . , cn} over the course of m ≥ n days. Each hipster hj has an
itinerary where he/she decides to visit one coffee shop per day (or maybe take a day off if
m > n). However, hipsters are fiercely independent and prefer not to share coffee shops with
other hipsters. Furthermore, each hipster is looking for a favorite coffee shop to call his or
her own. Each hipster h would like to choose a particular day dh and stay at his/her current

1



coffee shop ch for the remaining m− dh days of the tour. Of course, this means that no other
hipsters can visit ch after day dh, since hipsters don’t like sharing coffee shops.

Show that no matter what the hipsters’ itineraries are, it is possible to assign each hipster h
a unique coffee shop ch, such that when h arrives at ch according to the itinerary for h, all
other hipsters h′ have either stopped touring coffee shops themselves, or h′ will not visit ch
after h arrives at ch. Describe an algorithm to find this matching.

4. The Wedding Planner Problem. Imagine you are a wedding planner. Among other tasks,
you must help your customers with their guest lists. Couples come to you with lists of people
they might invite to their wedding. They also come with demands – Alice and Bob need to
be invited, but if Bob is invited, do not invite Carol (they have history). When Carol, Dave,
and Eve get together, they only talk about Justin Bieber (their favorite musician), so don’t
invite all three. However, any two of them is ok. Call these conditions constraints.

People at weddings are demanding. Everything needs to be exactly perfect, and they will
blame you if even one constraint is not satisfied. You’re not even sure if this is possible, and
it when it’s not, it would be nice to have a convincing argument for the wedding couple.

Design an algorithm that takes a list of people, and a list of constraints, and outputs yes if
there is an invite list that satisfies every constraint. Otherwise, output no.

2


