
CS41 Homework 10
This is a two-week, 14 point assignment. This homework is due at 11:59PM on Sunday, December
8. Write your solution using LATEX. Submit this homework in a file named hw10.tex using github.
This is a partnered homework. You should primarily be discussing this homework with your partner.

It’s ok to discuss approaches at a high level. In fact, I encourage you to discuss general strategies.
However, you should not reveal specific details of a solution, nor should you show your written
solution to anyone else. The only exception to this rule is work you’ve done with a lab partner/group
while in lab. In this case, note (in your post-homework survey) who you’ve worked with and what
parts were solved during lab.

The main learning goals of this homework are to practice working with NP-Completeness and
to design and analyze approximation algorithms.

1. Multiple-Interval-Scheduling (K&T 8.14) In this problem, there is a machine that is
available to run jobs over some period of time, say 9AM to 5PM.

People submit jobs to run on the processor; the processor can only work on one job at any
single point in time. However, in this problem, each job requires a set of intervals of time
during which it needs to use the machine. Thus, for example, one job could require the
processor from 10AM to 11AM and again from 2PM to 3PM. If you accept this job, it ties
up your machine during these two hours, but you could still accept jobs that need any other
time periods (including the hours from 11AM to 2PM).

Now, you’re given an integer k and a set of n jobs, each specified by a set of time intervals,
and you want to answer the following question: is it possible to accept at least k of the jobs
so that no two of the accepted jobs have any overlap in time?

In this problem, you are to show that Multiple-Interval-Scheduling P NP-complete.
To assist you, we’ve broken down this problem into smaller parts:

(a) First, show that Multiple-Interval-Scheduling P NP.

(b) In the remaining two parts, you will reduce

Independent-SetďPMultiple-Interval-Scheduling .

Given input pG “ pV,Eq, kq for Independent-Set, create a valid input for Multiple-
Interval-Scheduling. First, divide the processor time window into m distinct and
disjoint intervals i1, . . . , im. Associate each interval ij with an edge ej . Next, create a
different job Jv for each vertex v P V . What set of time intervals should you pick for
job Jv?

(c) Finally, run the Multiple-Interval-Scheduling algorithm on the input you create,
and output yes iff theMultiple-Interval-Scheduling algorithm outputs yes. Argue
that the answer to Multiple-Interval-Scheduling gives you a correct answer to
Independent-Set.

2. In the Four-Coloring problem, the input is a graph G “ pV,Eq, and you should output
yes iff the vertices in G can be colored using at most four colors such that each edge pu, vq P E
is bichromatic. Prove that Four-Coloring P NP-complete.

1

https://www.cs.swarthmore.edu/amelia/brody/pollster-cs41-f24


3. Approximation Algorithm for Three-Coloring. Recall the Three-Coloring prob-
lem: Given a graph G “ pV,Eq, output yes iff the vertices in G can be colored using only
three colors such that the endpoints of any edge have different colors. We saw in class that
Three-Coloring P NP-complete. Let Three-Coloring-OPT be the following prob-
lem. Given a graph G “ pV,Eq as input, color the vertices in G using at most three colors in
a way that maximizes the number of satisfied edges, where an edge e “ pu, vq is satisfied if u
and v have different colors.

Give a deterministic, polynomial-time (3/2)-approximation algorithm for Three-Coloring-
OPT. Your algorithm must satisfy at least 2c˚{3 edges, where for an arbitrary input G “

pV,Eq, c˚ denotes the maximum number of satisfiable edges.

4. (K&T 11.3) Suppose you are given a set of positive integers A “ ta1, a2, . . . , anu and a
positive integer B. A subset S Ď A is called feasible if the sum of the numbers in S does not
exceed B:

ÿ

aiPS

ai ď B.

The sum of the numbers in S will be called the total sum of S.

You would like to select a feasible subset S of A whose total sum is as large as possible.

For example, if A “ t8, 2, 4u and B “ 11 then the optimal solution is the subset S “ t8, 2u.

(a) Here is an algorithm for this problem.

notQuiteRight(A “ ta1, . . . , anu, B)

1 initialize S “ H

2 define T “ 0
3 for i “ 1 to n:
4 if T ` ai ď B
5 S Ð S Y taiu
6 T Ð T ` ai
7 return S

Give an input for which the total sum of the set S returned by this algorithm is less
than half the total sum of some other feasible subset of A. (You don’t necessarily have
to find the optimal subset, just some feasible subset.)

(b) Give a polynomial-time approximation algorithm for this problem with the following
guarantee: It returns a feasible set S Ď A whose total sum is at least half as large
as the maximum total sum of any feasible set S1 Ď A. Your algorithm should run
asymptotically faster than Opn2q.

2


