
CS41 Lab 9: Dynamic Programming
November 4, 2022

In typical labs this semester, you’ll be working on a number of problems in groups of 3-4
students. You will not be handing in solutions; the primary purpose of these labs is to have a
low-pressure space to discuss algorithm design. However, it will be common to have some overlap
between lab exercises and homework sets.

The learning goals of lab this week are (i) to better understand the power of dynamic program-
ming and (ii) to practice building DP algorithm design skills.

1. Testing RNA Substructure Implementations. Last week, we introduced the RNA
Substructure problem and developed an efficient algorithm for RNA Substructure that uses
dynamic programming.In this lab problem, you’ll see this solution in practice.

In /home/brody/public/cs41/, you’ll find two executables: rna-A, and rna-B. One uses dy-
namic programming to solve the RNA Substructure problem, and one solves it without storing
solutions to overlapping subproblems in a table. Each implementation takes in the name of
a file containing a single string representing an RNA molecule, and returns the size of the
largest matching (following the RNA substructure rules discussed in class).

For this exercise, you’ll use the UNIX time command to examine the runtime of each imple-
mentation. For example, to measure how much time rna-A takes on input rna test data/test1,
execute

$ time /home/brody/public/cs41/rna-A /home/brody/public/cs41/rna test data/test1

(a) Using the test files in rna test data and your own test files, determine which program
uses dynamic programming and which does not.

(b) How large can inputs be? For both rna-A and rna-B, create input files of different
sizes and determine how large the input can be if the implementation must run in at
most 30 seconds.

(c) How does the runtime scale? Again for each implementation, create some test files
of different lengths, and measure the execution time and how it scales with the size of
the inputs. Use this to guess what the implementation’s runtime is. Is rna-A an O(n2)
algorithm? or O(n3) or O(n4)? O(2n)? Do the same for rna-B.

2. Subset Sum. In this problem, you are given an integer weight threshold W > 0 and a list of
n items {1, . . . , n} each with nonnegative weight wi. Your task is to output a subset of items
S ⊆ {1, . . . , n} such that

∑
i∈S wi is as large as possible, subject to

∑
i∈S wi ≤ W .

Design an analyze a dynamic program to solve Subset Sum. Your algorithm should run in
O(nW ) time.

3. Gerrymandering (K& T 6.24) Gerrymandering is the practice of carving up electoral
districts in very careful ways so as to lead to outcomes that favor a particular political party.
Recent court challenges to the practice have argued that through this calculated redistricting,
large numbers of voters are being effectively (and intentionally) disenfranchised.

Suppose we have a set of n precincts P1, . . . , Pn, each containing m registered voters. We’re
supposed to divide these precincts in to two districts, each consisting of n/2 precincts. Now,

1



for each precinct, we have information on how many voters are registered to each of two
political parties. Say that the set of precincts is susceptible to gerrymandering if it is possible
to perform the division into two districts in such a way that the same party holds a majority
in both districts.

Give an algorithm to determine whether a given set of precincts is susceptible to gerryman-
dering. The running time of your algorithm should be polynomial in n and m.

For example, suppose there are four precincts, and two political parties A and B. Letting Ai

and Bi be the number of voters in precinct i of each political party, Suppose we have

A1 = 55, A2 = 43, A3 = 60, A4 = 47 and

B1 = 45, B2 = 57, B3 = 40, B4 = 53 .

This set of precincts is susceptible to gerrymandering since pairing precincts 1 and 4 together
and 2, 3 together gives party A a 102 - 98 majority in the first district and a 103 - 97 majority
in the second.

Hint: Focus on the choice you need to make as you’re building up a partial solution to this
problem (in this case, an assignment of precincts to districts). You will likely need to maintain
extra information about the partial solution.

2


