
CS41 Lab 4
September 22, 2022

In typical labs this semester, you’ll be working on a number of problems in groups of 3-4 students.
You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure
space to discuss algorithm design. However, it will be common to have some overlap between lab
exercises and homework sets.
The learning goals of this lab session are to gain more experience with undirected graphs and to
practice algorithm design for graph problems. There should be more problems on this writeup
than you have time to complete. Consider the lab a success if you can make good progress on two
problems.

1. k-coloring. A graph is k-colorable if it’s possible to color each vertex using one of k colors
such that the endpoints of each edge have different colors. Design and analyze an O(n+m)-
time algorithm that colors a graph using ∆ + 1 colors, where ∆ is the largest degree of a
vertex.

2. Paths in Graphs. A path P in a graph G = (V,E) is a sequence of vertices P = [v1, . . . , vk]
such that for all 1 ≤ i < k there is an edge (vi, vi+1) ∈ E. P is simple if all vi’s are distinct.

In this problem, you will examine different graphs and consider how many different paths can
exist in the graph.

(a) Describe a graph G1 on n vertices where between any two distinct vertices there are zero
simple paths.

(b) Describe a graph G2 on n vertices where between any two distinct vertices there is
exactly one simple path.

(c) Describe a graph G3 on n vertices where between any two distinct vertices there are
exactly two simple paths.

(d) Describe a graph G4 = (V,E) on n vertices and two distinct vertices s, t ∈ V such that
there are 2Ω(n) simple s⇝ t paths.

3. Testing Bipartiteness. A graph G = (V,E) is bipartite if the vertices V can be partitioned
into two sets A,B ⊆ V such that for any edge (u, v) ∈ E, the vertices u, v lie in different sets.
In other words, a graph G is bipartite if it is 2-colorable.

Design an analyze a O(n+m) algorithm that takes a graph G as input and outputs YES if
G is bipartite, and outputs NO otherwise.

4. Testing Tripartiteness. Call a graph G = (V,E) tripartite if V can be partitioned into
disjoint sets A,B,C such that for any edge (u, v) ∈ E, the vertices u, v lie in different sets.
In other words, a tripartite graph is three-colorable.

(a) Design and analyze an algorithm which takes as input an undirected graph G = (V,E)
and returns YES if G is three-colorable, and NO otherwise.

(b) Design and analyze an efficient algorithm which takes as input a three-colorable graph
G = (V,E) and colors the vertices of the graph using O(

√
n) colors. (Note: while the

input graph is three-colorable, it does not mean that we know what that coloring is!)
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