
CS41 Homework 4

This homework is due at 11:59PM on Wednesday, October 5. Write your solution using LATEX.
Submit this homework in a file named hw4.tex using github.

This is a two week, 15 point assigment. This is a partnered homework. You should primarily
be discussing problems with your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific
details of a solution, nor should you show your written solution to anyone else. The only exception
to this rule is work you’ve done with a lab teammate while in lab. In this case, note (in your
homework submission poll) who you’ve worked with and what parts were solved during lab.

The main learning goals of this homework assignment are to practice algorithm design and
to gain experience with graph algorithms.

1. Paths in Graphs. A path P in a graph G = (V,E) is a sequence of vertices P = [v1, . . . , vk]
such that for all 1 ≤ i < k there is an edge (vi, vi+1) ∈ E. P is simple if all vi’s are distinct.

In this problem, you will examine different graphs and consider how many different paths can
exist in the graph.

(a) Describe a graph G1 on n vertices where between any two distinct vertices there are zero
simple paths.

(b) Describe a graph G2 on n vertices where between any two distinct vertices there is
exactly one simple path.

(c) Describe a graph G3 on n vertices where between any two distinct vertices there are
exactly two simple paths.

(d) Describe a graph G4 = (V,E) on n vertices and two distinct vertices s, t ∈ V such that
there are 2Ω(n) simple s⇝ t paths.

2. Cycle Detection (K& T 3.2) A cycle in a graph G = (V,E) is a path C = [v1, . . . , vk]
such that k > 3, v1, . . . , vk−1 are distinct, and vk = v1. For example, in a complete graph,
[a, b, c, a] is a cycle.

Give an algorithm to detect whether a given undirected graph contains a cycle. If the graph
contains a cycle, then your algorithm should output one. Otherwise, your algorithm should
output NO. Your runtime should be O(m+ n) for a graph with m edges and n vertices.

Hint: Don’t forget edge cases. Don’t forget to return the cycle if one is detected.

3. Butterfly Classification(K& T 3.4) Some of your friends are lepidopterists — they study
butterflies. Part of their recent work involves collecting butterfly specimens and identifying
what species they belong to. Unfortunately, determining distinct species can be difficult
because many species look very similar to one another.

During their last field expedition, your friends collected n butterfly specimens and believe the
specimens come from one of two butterfly species (call them species A and B.) They’d like
to divide the n specimens into two groups—those that belong to A and those that belong to
B. However, it is very hard for them to directly label any one specimen. Instead, they adopt
the following approach:

1



For each pair of specimens i and j, they study them carefully side by side. If they’re confident
enough in their judgement, they will label the pair as same (meaning they are confident
that both specimens belong to the same species) of different (meaning they believe that
the specimens belong to different species). If they are not confident, they do not label the
specimens. Call this labeling (either (i, j) are the same or (i, j) are different) a judgement.

A set of judgements is consistent if it is possible to label each specimen either A or B in
such a away that for each pair (i, j) labeled ”same”, it is the case that i and j have the same
label, and for each pair (i, j) labeled ”different”, it is the case that i and j have different
labels.

Design and analyze an algorithm which takes n butterfly specimens and m judgements, and
outputs whether or not the judgements are consistent. Your algorithm should run in O(n+m)
time.

4. Ethnographers. (Kleinberg and Tardos, 3.12) You’re helping a group of ethnographers
analyze some oral history data they’ve collected by interviewing members of a village to learn
about the lives of people who have lived there over the past two hundred years.

From these interviews, they’ve learned about a set of n people (all now deceased), whom we’ll
denote P1, P2, . . . , Pn. They’ve also collected facts about when these people lived relative to
one another. Each fact has one of the following two forms:

� for some i and j, person Pi died before person Pj was born; or

� for some i and j, the lifespans of Pi and Pj overlapped at least partially.

Naturally, the ethnographers are not sure that all these facts are correct; memories are not
very good, and a lot of this was passed down by word of mouth. So what they’d like you
to determine is whether the data they’ve collected is at least internally consistent, in the
sense that there could have existed a set of people for which all the facts they’ve learned
simultaneously hold.

Give an efficient algorithm to do this: either it should propose dates of birth and death for
each of the n people so that all the facts hold true, or it should report (correctly) that no such
dates can exist—that is, the facts collected by the ethnographers are not internally consistent.

5. (Extra Credit.) This week, we saw an algorithm for testing bipartiteness which used BFS
to color the vertices one of two colors. For a positive integer k, call a graph k-colorable
if the vertices can be properly colored using k colors. In other words, a bipartite graph is
two-colorable. In this problem, you will investigate algorithms dealing with three-colorable
graphs.

� Design and analyze an algorithm which takes as input a graph G = (V,E) and returns
YES if G is three-colorable, and NO otherwise.

� Design and analyze an efficient algorithm which takes as input a three-colorable graph
G = (V,E) and colors the vertices of the graph using O(

√
n) colors. (Note: while the

input graph is three-colorable, it does not mean that we know what that coloring is!)

2


