CS41 Homework 10

This homework is due at 11:59PM on Wednesday, December 7. Write your solution using $\mathrm{E}_{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{P}$. Submit this homework in a file named hw10.tex using github.

This is a partnered homework. You should primarily be discussing problems with your homework partner. It's ok to discuss approaches at a high level with others. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you've done with a lab teammate while in lab. In this case, note (in your homework submission poll) who you've worked with and what parts were solved during lab.

1. In the Four-Coloring problem, the input is a graph $G=(V, E)$, and you should output YES iff the vertices in G can be colored using at most four colors such that each edge $(u, v) \in E$ is bichromatic. Prove that Four-Coloring \in NP-complete.
2. Path-Selection (K\&T 8.9) Consider the following problem. You are managing a communication network, modeled by a directed graph $G=(V, E)$. There are c users who are interested in making use of this network. User i (for each $i=1, \ldots, c$) issues a request to reserve a specific path P_{i} in G on which to transmit data.
You are interested in accepting as many of these path requests as possible, subject to the following restriction: if you accept both P_{i} and P_{j}, then P_{i} and P_{j} cannot share any nodes.
Thus, the Path-Selection problem asks: Given a directed graph $G=(V, E)$, set of requests P_{1}, \ldots, P_{C} - each of which is a path in G, and a number k, output YES iff it is possible to select at least k paths so that no two of the selected paths share any nodes.
Prove that Path-Selection is NP-Complete.
3. Intersection-Inference (K\&T 8.16) Consider the problem of reasoning about the identity of a set from the size of ts intersections with other sets. You are given a finite set U of size n, and a collection $A_{1}, \ldots, A_{m} \subset U$ of subsets of U. You are also given integers c_{1}, \ldots, c_{m}. The question is: does there exists $X \subset U$ such that for each $i=1,2, \ldots, m$, the cardinality of $X \cap A_{i}$ equals c_{i}. We will call this an instance of the Intersection-Inference problem, with input $U,\left\{A_{i}\right\},\left\{c_{i}\right\}$.

Prove that Intersection-Inference is NP-complete, Hint: reduce from the following problem, which you may assume is NP-COMPLETE:

Problem One-In-Three-Sat:

Inputs: n variables x_{1}, \ldots, x_{n} and m clauses c_{1}, \ldots, c_{m} where each clauses is the OR of three literals e.g., $c_{i}=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$.
Output: Yes iff there is a truth assignment to the variables such that for each clauses there is exactly one satisfied variable.

Hint: Let U be the set of literals. You'll have to work to ensure that a variable and its negation cannot both end up in X.

