
CS31 Homework 5: x86 64 Loops and Functions
Due at 11:59pm Thursday, October 24, 2024

Full names of all students who worked on this:

Question 1

Convert the following C code fragment to equivalent x86 64 assembly code in two steps:
(1) First, translate the loop to its equivalent C goto version
(2) Next, translate your C goto version to x86 64, assuming that fox is at %rbp - 8, emu is at
%rbp - 16, and owl is at %rbp - 24.
You must show both steps (1) and (2), and to receive partial credit annotate your x86 64 code with
comments describing which part of the C code you are implementing.

long fox, emu, owl; (2) x86_64 Translation

fox = 12; --------------------

emu = 90;

owl = fox - emu;

while (fox < emu) {

fox *= 2;

owl += fox;

}

(1) C goto version

Question 2

Trace through the following x86 64 code. Show the contents of the given memory and registers
just before the instruction at point A is executed. Assume the addq instruction in main

that is immediately after the callq instruction is at memory address 0x1234. Hints:

� remember to start execution in main.

� %rsp points to the item on the top of the stack: a push grows the top of the stack and inserts
the pushed value. A pop copies the value on top of the stack, then shrinks the stack.

� The sequence of instructions leaveq; retq is equivalent to the sequence:
movq %rbp, %rsp; popq %rbp; popq %rip.

func:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq %rdi, %rax

addq %rax, %rax

movq %rax, -8(%rbp)

movq -8(%rbp), %rax

leaveq # point A

retq

main:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $6, -8(%rbp)

movq -8(%rbp), %rdi

callq func

addq $8, %rsp # at addr 0x1234

movq %rax, -8(%rbp)

movq $0, %rax

leaveq

retq

initial
register value value at point A

%rax 2

%rdi 3

%rsp 0x88d8

%rbp 0x88f8

memory address value at point A

0x8880

0x8888

0x8890

0x8898

0x88a0

0x88a8

0x88b0

0x88b8

0x88c0

0x88c8

0x88d0

0x88d8

0x88e0

0x88e8

0x88f0

0x88f8

