CS 31 Homework 4: x86_64 Arithmetic Due at 11:59pm, Thursday, October 10, 2024

Full Names:

1. Assume the CPU is executing a program and the state of some of its registers is given in the table below. Show how the registers would be updated by the sequence of x86_64 instructions also listed below, i.e. fill in the Final Value column. Show your work by listing the intermediate values of the registers.

Register	Initial Value	Final Value
%rax	0	
%rbx	1	
%rcx	2	
%rdx	3	

Here are the x86_64 instructions:

add	\$20, %rax
add	%rax, %rbx
sub	%rcx, %rbx
add	\$3, %rcx
sub	%rdx, %rcx
add	%rdx, %rdx
dec	%rdx
shr	\$4, %rbx
and	<pre>\$0xfffffffe, %rdx # this is tricky</pre>
xor	%rax, %rax # this is tricky
or	\$0x0, %rcx
# thin	k about these next two before answering
not	%rbx
add	\$1, %rbx

2. Assume the CPU is executing a function that has local variables x, y, and z allocated on the stack, and that x is allocated at the memory address that is -24 bytes from the address value stored in register %rbp, or -24(%rbp). Assume y is stored at -16(%rbp), and z is at -8(%rbp).

For the assembly code and register values listed below:

(1) Show the values that will be stored in the registers and in memory when execution of these instructions is complete. If the value is unknown, write "?".

(2) Write a C code translation of the assembly code sequence. You may assume that \mathbf{x} , \mathbf{y} , and \mathbf{z} have already been declared as int variables in the C code. You do not need to write the entire function, just the lines of C that might have generated the x86_64 instructions. Hint: our solution is 5 lines of C code.

C Code Translation

movl \$2, -8(%rbp) \$3, -16(%rbp) movl movl -8(%rbp), %rdx -16(%rbp), %rax movl addl %rdx, %rax %rax, -24(%rbp) movl incl -8(%rbp) sall \$1, -16(%rbp)

Memory Address	Final Value
0xffffff38	
0xffffff40	
0xffffff48	
0xffffff50	
0xffffff58	
0xffffff60	
0xfffff68	

	1	1
Register	Initial Value	Final Value
%rax	4	
%rdx	7	
%rbp	0xffffff58	