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ABSTRACT

Shamos [1] recently showed that the diameter of a convex n-sided polygon could be
computed in O(n) time using a very elegant and simple procedure which resembles
rotating a set of calipers around the polygon once. In this paper we show that this sim-
ple idea can be generalized in two ways: several sets of calipers can be used simulta-
neously on one convex polygon, or one set of calipers can be used on several convex
polygons simultaneously. We then show that these generalizations allow us to obtain
simple O(n) algorithms for solving a variety of problems defined onconvex polygons.
Such problems include (1) finding the minimum-area rectangle enclosing a polygon,
(2) computing the maximum distance between two polygons, (3) performing the vec-
tor-sum of two polygons, (4) merging polygons in a convex hull finding algorithms,
and (5) finding the critical support lines between two polygons. Finding the critical
support lines, in turn, leads to obtaining solutions to several additional problems con-
cerned with visibility, collision, avoidance, range fitting, linear separability, and com-
puting the Grenander distance between sets.

1.  Introduction

Let P = (p1, p2,..., pn) be a convex polygon with n vertices instandard form, i.e., the vertices
are specified according to cartesian coordinates in a clockwise order and no three consecutive ver-
tices are colinear. We assume the reader is familiar with [1]. In [1] Shamos presents a very simple
algorithm for computing thediameter of P. The diameter is the greatest distance betweenparallel
lines of support of P. A line L is a line of support of P if the interior of P lies completely to one side
of L. We assume here that L is directed such that P lies to theright of L. Figure 1 illustrates two
parallel lines of support. A pair of vertices pi, pj is anantipodal pair if it admits parallel lines of
support. The algorithm of Shamos [1] generates all O(n) antipodal pairs of vertices and selects the
pair with largest distance as the diameter-pair. The procedure resembles rotating a pair of dynam-
ically adjustable calipers once around the polygon. Consider Figure 1. To initialize the algorithm
a direction such as the x-axis is chosen and the two antipodal vertices pi and pj can be found in O(n)
time. To generate the next antipodal pair we consider the angles that the lines of support at pi and
pj make with edges pipi+1 and pjpj+1, respectively. Let angleθj < θi. Then we “rotate” the lines of
support by an angleθj, and pj+1, pi becomes the next antipodal pair. This process is continued until
we come full circle to the starting position. In the event thatθj = θi three new antipodal pairs are
generated.
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In this paper we show that this simple idea can be generalized in two ways: several sets of
calipers can be used on one polygon or one pair of calipers can be used on several polygons. We
then show that these generalizations provide simple O(n) solutions to a variety of geometrical
problems defined on convex polygons. Such problems include the minimum-area enclosing rect-
angle, the maximum distance between sets, the vector sum of two convex polygons, merging con-
vex polygons, and finding the critical support lines of linearly separable sets. The last problem, in
turn, has applications to problems concerning visibility, collision avoidance, range fitting, linear
separability, and computing the Grenander distance between sets.

2.  The Smallest-Area Enclosing Rectangle

This problem has received attention recently in the image processing literature and has appli-
cations in certain packing and optimal layout problems [2] as well as automatic tariffing in goods-
traffic [3]. Freeman and Shapira [2] prove the following crucial theorem for solving this problem

Theorem 2.1: The rectangle of minimum area enclosing a convex polygon has a side collinear
with one of the edges of the polygon.

The algorithm presented in [2] constructs a rectangle in O(n) time for each edge of P and se-
lects the smallest of these for a total running time of O(n2).

This problem can be solved in O(n) time using two pairs of calipers orthogonal to each other.
Let Ls(pi) denote the directed line of support of the polygon at vertex pi such that P is to the right
of the line. Let L(pi, pj) denote the line through pi and pj. The first step consists of finding the ver-
tices with the minimum and maximum x and y coordinates. Let these vertices be denoted by pi, pk,
pl, and pj, respectively, and refer to Figure 2. We next construct Ls(pj) and Ls(pl) as the first set of
calipers in the x direction, and Ls(pi), Ls(pk) as the second set of calipers in a direction orthogonal
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to that of the first set. All this can be done in O(n) time. As in Shamos’ diameter algorithm we now
have four, instead of two, angles to considerθi, θj, θk andθl. Letθi = min{θi, θj, θk, θl}. We “ro-
tate” the four lines of support by an angleθi, L(pi,pi+1) forms the base line of the rectangle associ-
ated with edge pipi+1 and the corners of the rectangle can be computed easily in O(1) time from the
coordinates of pi, pi+1, pj, pk and pl. We now have a new set of angles and the procedure is repeated
until we scan the entire polygon. The area of each rectangle can be computed in constant time in
this way resulting in a total running time of O(n). Another O(n) algorithm that implements this idea
using a data structure known as astar is described in [4].

3.  The Maximum Distance Between Two Convex Polygons

Let P = (p1, p2,..., pn) and Q = (q1, q2,..., qn) be two convex polygons. The maximum distance
between P and Q, denoted by dmax(P,Q), is defined as

dmax(P,Q) =  {d(pi, qj)} i,j = 1, 2,..., n,

where d(pi, qj) is the euclidean distance between pi and qj. This distance measure has applications
in cluster analysis [5]. A rather complicated O(n) algorithm for this problem appears in [6]. How-
ever, a very simple solution can be obtained by using a pair of calipers as in Figure 3. In Figure 3
the parallel lines of support Ls(qj) and Ls(pi) have opposite directions and thus pi and qj are anan-
tipodal pair between the sets P and Q. The two lines of support define two anglesθi andφj, and
the algorithm proceeds as in the diameter problem of Shamos [1]. Note that dmax(P,Q)≠ diameter
(P∪ Q) in general and thus we cannot use the diameter algorithm on P∪ Q to solve this problem.
For further details the reader is referred to [7].

max

i j,

Fig. 3

qj

qj+1

pi

pi+1

pi+2

θi

φj

P

Q



- 4 -

4.  The Vector Sum of Two Convex Polygons

Consider two convex polygons P and Q. Given a point r = (xr, yr) ε P and a point s = (xs, ys)
ε Q, the vector sum of r and s, denoted by r⊕ s is a point on the plane t = (xr + xs, yr + ys). The
vector sum of the two sets P and Q, denoted as P⊕ Q is the set consisting of all the elements ob-
tained by adding every point in Q to every point in P. Vector sums of polygons and polyhedra have
applications in collision avoidance problems [8]. The following theorems make the problem com-
putable.

Theorem 4.1:  P⊕ Q is a convex polygon.

Theorem 4.2:  P⊕ Q has no more than 2n vertices.

Theorem 4.3:  The vertices of P⊕ Q are vector sums of the vertices of P and Q.

These theorems suggest the following algorithms for computing P⊕ Q. First compute pi ⊕
qj, for i, j = 1, 2,..., n to obtain n2 candidates for the vertices of P⊕ Q. Then apply an O(n log n)
convex hull algorithm to the candidates. The total running time of such an algorithm is O(n2 log n).

 We now show that P⊕ Q can be computed in O(n) time using the rotating calipers. Two
vertices pi ε P and qj ε Q that admit parallel lines of support in thesame direction as illustrated in
Figure 4 will be referred to as aco-podal pair. The following theorem allows us to search only co-
podal pairs of P and Q in constructing P⊕ Q.

Theorem 4.4:  The vertices of P⊕ Q are vector sums ofco-podal pairs of P and Q.
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Finally, theorem 4.5 allows us to use the rotating calipers to construct P⊕ Q while searching
theco-podal pairs of vertices.

Theorem 4.5:  Let zk = pi ⊕ qj denote the vertex of P⊕ Q being considered. Then the succeeding

vertex zk+1 = pi ⊕ qj+1 if φj < θi, zk+1 = pi+1 ⊕ qj if θi < φj, and zk+1 = pi+1 ⊕ qj+1 if θi = φj.

Thus, each vertex of P⊕ Q can be constructed in O(1) time after an O(n) initialization step,
and since there are at most 2n such vertices, O(n) time suffices to compute P⊕ Q.

5.  Merging Convex Hulls

A typical divide-and-conquer approach to finding the convex hull of a set of n points on the
plane consists of sorting the points along the x axis and subsequently merging bigger and bigger
convex polygons until one final convex polygon is obtained [9]. Performing the merge in linear
time will guarantee an O(n log n) upper bound on the complexity of the entire process. Merging
two convex polygons P, Q consists of essentially finding two pairs of vertices pi, pj and qk, ql such
that the new edges piqk and qlpj, together with the two outer chains qk, qk+1,..., ql and pj, pj+1,..., pi
form the convex hull of P∪ Q. An edge such as piqk is called abridge and the vertices making up
a bridge (such as pi and qk) are referred to asbridge points. While O(n) algorithms exist for finding
the bridges of two disjoint convex polygons [9], we show here that the bridges can also be com-
puted very simply with the rotating calipers.
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The following theorem leads to the desired algorithm.

Theorem 5.1:  Two vertices pi ε P and qj ε Q arebridge points if, and only if, they form aco-podal
pair and the vertices pi-1, pi+1, qj-1, qj+1 all lie on the same side of L(pi, qj).

For example, in Figure 5 pi and qj areco-podal but qj+1 lies above L(pi, qj). Hence piqj is not
abridge. A simple algorithm for finding the bridges now becomes clear. As the co-podal pairs are
being generated during “caliper rotation” we merely test the four adjacent vertices of the co-podal
vertices to determine if they lie on the same side of the line collinear with the co-podal vertices,
and we stop when two bridges have been found. Thus we can determine whether a co-podal pair is
a bridge in O(1) time and the entire algorithm runs in O(n) time.

6.  Finding Critical Support Lines

Given two disjoint convex polygons P and Q a critical support line is a line L(pi, qj) such that
it is a line of support for P at pi, for Q at qj, and such that P and Q lie on opposite sides of L(pi, qj).
Critical support (CS) lines have applications in a variety of problems.

6.1 Visibility
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A typical problem in two-dimensional graphics consists of computing all visibility lists of a
set of objects for a tour or a path taken on the plane by an observer [10]. The first step of an algo-
rithm for solving this task consists of partitioning the plane into regions Ri such that the visibility
list is the same for an observer stationed anywhere in some fixed region. For two convex polygons
the two CS lines partition the plane into the required visibility regions.

6.2 Collision avoidance

Visibility and collision avoidance problems are closely related [11]. Given two convex poly-
gons P and Q we may ask whether Q can be translated by an arbitrary amount in a specified direc-
tion without “colliding” with P. The CS lines provide an answer to this question.

6.3 Range fitting and linear separability

Both of these problems involve finding a line that separates two convex polygons [12]. The
critical support lines provide one solution to these problems. Consider Figure 6, where L(pi, qj) and
L(pi-2,qj-2) are the two CS lines. Denote their intersection by l*. We can choose as our separating
line that line that goes through l* and bisects angle pi l*q j-2.

6.4 The Grenander distance

Given two disjoint convex polygons P and Q there are many ways of defining the distance
between P and Q. One method already discussed is dmax(P,Q). Grenander [13] uses a distance mea-
sure based on CS lines. Let LE(pi, pj) denote the sum of the edge lengths of the polygonal chain pi,
pi+1,..., pj-1, pj and refer to Figure 6. The distance between P and Q would be

dsep(P, Q) = d(pi, qj) + d(pi-2, qj-2) - LE(pi-2, pi) - LE(qj-2, qj).

Clearly the computation of dsep is dominated by the computation of CS lines.

6.5 Computing the CS lines

Theorem 6.1:  Two vertices pi ε P and qj ε Q determine acritical support line if, and only if, they
form anantipodal pair and pi+1, pi-1 lie on one side of L(pi, qj) while qj-1, qj+1 lie on the other side
of L(pi, qj).

The above theorem allows us to proceed as for finding bridge points. We can determine if an
antipodal pair is a CS line pair in O(1) time for a total running time O(n). Thus all the problems
mentioned in section 6 can also be solved simply in O(n) time using the “rotating calipers”.

7.  Conclusion

In section 3 the problem of computing dmax(P, Q) was solved with the rotating calipers. One
naturally considers the alternate problem of computing

dmin(P, Q) = {d(pi, pj)} i, j = 1, 2,..., n.min

i j,



- 8 -

It turns out however that the pair of vertices determining dmin, surprisingly, is neither a co-podal
nor an antipodal pair and thus the techniques used with success on dmax fail on dmin. Finding an
O(n) algorithm for the latter problem remains an open question.

The field of computational geometry is in need of general principles and methodologies that
can be used to solve large classes of problems. Shamos [1] established that the Voronoi diagram is
one such general structure that can be used to solve a variety of geometric problems efficiently.
The results of this paper would indicate that the “rotating calipers” are another general tool for
solving geometric problems.
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