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Abstract

In this paper, we study the role non-adaptivity plays in maintaining dynamic data struc-
tures. Roughly speaking, a data structure is non-adaptive if the memory locations it reads
and/or writes when processing a query or update depend only on the query or update and
not on the contents of previously read cells. We study such non-adaptive data structures
in the cell probe model. This model is one of the least restrictive lower bound models and
in particular, cell probe lower bounds apply to data structures developed in the popular
word-RAM model. Unfortunately, this generality comes at a high cost: the highest lower
bound proved for any data structure problem is only polylogarithmic. Our main result is to
demonstrate that one can in fact obtain polynomial cell probe lower bounds for non-adaptive
data structures.

To shed more light on the seemingly inherent polylogarithmic lower bound barrier, we
study several different notions of non-adaptivity and identify key properties that must be
dealt with if we are to prove polynomial lower bounds without restrictions on the data
structures.

Finally, our results also unveil an interesting connection between data structures and
depth-2 circuits. This allows us to translate conjectured hard data structure problems into
good candidates for high circuit lower bounds; in particular, in the area of linear circuits
for linear operators. Building on lower bound proofs for data structures in slightly more
restrictive models, we also present a number of properties of linear operators which we
believe are worth investigating in the realm of circuit lower bounds.
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1 Introduction

Proving lower bounds on the performance of data structures has been an important line of
research for decades. Over time, numerous computational models have been proposed, of which
the cell probe model of Yao [21] is the least restrictive. Lower bounds proved in this model apply
to essentially any imaginable data structure, including those developed in the most popular
upper bound model, the word-RAM. Much effort has therefore been spent on deriving cell
probe lower bounds for natural data structure problems. Nevertheless, the highest lower bound
that has been proved for any data structure problem remains just polylogarithmic.

In this paper, we consider a natural restriction of data structures, namely non-adaptivity.
Roughly speaking, a non-adaptive data structure is a data structure for which the memory
locations read when answering a query or processing an update depend only on the query or
update itself, and not on the contents of the previously read memory locations. Surprisingly,
we are able to derive polynomially high cell probe lower bounds for such data structures.

1.1 The Cell Probe Model

In the cell probe model, a data structure consists of a collection of memory cells, each storing
w bits. Each cell has an integer address amongst [2w] = {1, . . . , 2w}, i.e. we assume any cell
has enough bits to address any other cell. When a data structure is presented with a query, the
query algorithm starts reading, or probing, cells of the memory. The cell probed at each step
may depend arbitrarily on the query and the contents of all cells probed so far. After probing
a number of cells, the query algorithm terminates with the answer to the query.

A dynamic data structure in the cell probe model must also support updates. When pre-
sented with an update, the update algorithm similarly starts reading and/or writing cells of the
data structures. We refer jointly to reading or writing a cell as probing the cell. The cell probed
at each step, and the contents written to a cell at each step, may again depend arbitrarily on
the update operation and the cells probed so far.

The query and update times of a cell probe data structure are defined as the number of cells
probed when answering a query or update respectively. The space usage is simply defined as
the largest address used by any cell of the data structure.

1.2 Previous Cell Probe Lower Bound Techniques

As mentioned, the state-of-the-art techniques for proving cell probe lower bounds unfortunately
yield just polylogarithmic bounds. In the following, we give a brief overview of the highest lower
bounds that has been achieved since the introduction of the model, and also the most promising
line of attack towards polynomial lower bounds.

Static Data Structures. One of the most important early papers on cell probe lower bounds
for static data structures is the paper of Miltersen et al. [15]. They demonstrated an elegant re-
duction to data structures from an assymmetric communication game. This connection allowed
them to obtain lower bounds of the form tq = Ω(lg m/ lg S), where m denotes the number of
queries to the data structure problem, S the space usage in number of cells and tq the query
time. Note however that this bound is insensitive to polynomial changes in S and cannot give
super-constant lower bounds for problems where the number of possible queries is just polyno-
mial in the input size (which is true for most natural problems). This barrier was overcome
in the seminal work of Pǎtraşcu and Thorup [19], who extended the communication game of
Miltersen et al. [15] and obtained lower bounds of tq = Ω(lg m/ lg(Stq/n)), which peaks at
tq = Ω(lg m/ lg lg m) for data structures using npoly(lg m) space.

1



An alternative approach to static lower bounds was given by Panigrahy et al. [16]. Their
method is based on sampling the cells of a data structure and showing that many queries can be
answered from a small set of cells if the query time is too small (we note that similar ideas have
been used for succinct data structure lower bounds, see e.g. [9]). The maximum lower bounds
that can be obtained from this technique are of the form tq = Ω(lg m/ lg(S/n)), see [13]. For
linear space, this reaches tq = Ω(lg m), which remains the highest static lower bound to date.

Dynamic Data Structures. The first technique for proving lower bounds on dynamic data
structures was the chronogram technique of Fredman and Saks [7]. This technique gives lower
bounds of the form tq = Ω(lg n/ lg(wtu)) and plays a fundamental role in all later techniques
for proving dynamic data structure lower bounds. Pǎtraşcu and Demaine [18] extended the
technique of Fredman and Saks with their information transfer technique. This extension
allowed for lower bounds of max{tq, tu} = Ω(lg n). Very recently, Larsen [12] combined the
chronogram technique of Fredman and Saks with the cell sampling method of Panigrahy et al.
to obtain a lower bound of tq = Ω((lg n/ lg(wtu))2), which remains the highest lower bound
achieved so far.

Conditional Lower Bounds. Examining all of the above results, we observe that no lower
bound has yet exceeded max{tu, tq} = Ω((lg n/ lg lg n)2) in the most natural case of polynomially
many queries, i.e. m = poly(n). In an attempt to overcome this barrier, Pǎtraşcu [17] defined
a dynamic version of a set disjointness problem, named the multiphase problem. We study
problems that are closely related to the multiphase problem, so we summarize it here:

The Multiphase Problem. This problem consists of three phases:

• Phase I: In this phase, we receive k sets S1, . . . , Sk, all subset of a universe [n]. We are
allowed to preprocess these sets into a data structure using time O(τkn).

• Phase II: We receive another set T ⊆ [n] and have time O(τn) to read and update cells
of the data structure constructed in Phase I.

• Phase III: We receive an index i ∈ [k] and have time O(τ) to read cells of the data
structure constructed during Phase I and II in order to determine whether Si ∩ T = ∅.

Pǎtraşcu conjectured that there exists constants µ > 1 and ε > 0 such that any solution
for the multiphase problem must have τ = Ω(nε) when k = nµ, i.e. for the right relationship
between n and k, any data structure must have either polynomial preprocessing time, update
time or query time. Furthermore, he reduced the multiphase problem to a number of natural
data structure problems, including e.g. the following problems.

• Reachability in Directed Graphs. In a preprocessing phase, we are given a directed
graph with n nodes and m edges. We are then to support inserting directed edges into
the graph. A query is finally specified by two nodes of the graph, u and v, and the goal
is to determine whether there exists a directed path from u to v.

• Subgraph Connectivity. In a preprocessing phase, we are given an undirected graph
with n nodes and m edges. We are then to turn nodes on and off. A query is finally
specified by two nodes of the graph, u and v, and the goal is to determine whether there
exists a path from u to v using only on nodes.

We also mention the following problem, which was shown in [2] to solve the multiphase problem.
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• Range Mode. In a preprocessing phase, we are given an array A[1 : n] = {A[1], . . . , A[n]}
of integers and are to support value updates A[i] ← A[i] + x. Queries are specified by
two indicies i and j, and the goal is to find the most frequently occuring integer in the
subarray A[i : j].

These reductions imply polynomial lower bounds for the above problems, if the multiphase
problem has a polynomial lower bound. Thus it seems fair to say that studying the multiphase
problem is the most promising direction for obtaining polynomial data structure lower bounds.

1.3 Non-Adaptivity

Given that we are generally clueless about how to prove polynomial lower bounds in the cell
probe model, it is natural to investigate under which circumstances such bounds can be achieved.
In this paper, we study the performance of data structures that are non-adaptive. To make the
notion of non-adaptivity precise, we define it in the following:

• Non-Adaptive Query Algorithm. A cell probe data structure has a non-adaptive
query algorithm, if the cells it probes when answering a query depend only on the query,
and not on the contents of previously probed cells.

• Non-Adaptive Update Algorithm. Similarly, a cell probe data structure has a non-
adaptive update algorithm, if the cells it probes when processing an update depend only
on the update, and not on the contents of previously probed cells.

• Memoryless Update Algorithm. In this paper, we also study a slighlty more restrictive
type of update algorithm. A cell probe data structure has a memoryless update algorithm,
if the update algorithm is both non-adaptive, and furthermore, the contents written to a
cell during an update depend only on the update and the current contents of the cell, i.e.,
they may not depend on the contents of other cells probed during the update operation.1

• Linear Data Structures. Finally, we study a sub-class of the data structures with a
memoryless update algorithm, which we refer to as linear data structures. These data
structures are defined for problems where the input can be interpreted as an array A of n
bits and an update operation can be interpreted as flipping a bit of A (from 0 to 1 or 1 to
0). A linear data structure has non-adaptive query and update algorithms. Furthermore,
when processing an update, the contents of all probed cells are simply flipped, and on a
query, the data structure returns the XOR of the bits stored in all the probed cells. Note
that these data structures use only a word size of w = 1 bit, every cell stores a linear
combination over the bits of A (mod 2) and a query again computes a linear combination
over the stored linear combinations (mod 2).

While linear data structures might appear to be severly restrictive, for many data structure
problems (particularly in the area of range searching), natural solutions are in fact linear. An
example is the well-studied prefix sum problem, where the goal is to dynamically maintain an
array A of bits under flip operations, and a query asks for the XOR of elements in a prefix range
A[1 . . . k]. One-dimensional range trees are linear data structures that solve prefix sum with

1A caveat on the semantics of updates: in this work, we assume updates specify how data changes (e.g.
updates are of the form A[k]← A[k] + ∆) as opposed to specifying new values for data (e.g. updates of the form
A[k] ← v). The latter notion goes against the notion of non-adaptive updates, since to rewrite a cell, one must
know how an update changes data. One solution is to assume that the data structure stores raw data directly,
and to allow memoryless updates to depend on the current contents of a cell, the update, and the previous value
of the update. We view this issue as largely semantic, and do not discuss it further.
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update and query time O(lg n). This is optimal when memory cells store only single bits [18],
even for adaptive data structures. More elaborate problems in range searching would be: Given
a fixed set P of n points in d-dimensional space, support deleting and re-inserting points of P
while answering queries of the form “what is the parity of the number of points inside a given
query range?”. Here query ranges could be axis-aligned rectangles, halfspaces, simplices etc.
We note that all the known data structures for range counting can easily be modified to yield
linear data structures when given a fixed set of points P , and still, this setting seems to capture
the hardness of range counting.

The main difference between non-adaptive and memoryless update algorithms is that non-
adaptive update algorithms may move the information about an update operation around the
data structure, even on later updates. As an example, consider a data structure with a non-
adaptive update algorithm and two possible updates, say updates u1 and u2. Even if the data
structure only probes the first memory cell on update u1, information about u1 can be stored
many other places in the data structure. Imagine the data structure initially stores the value 0
in the first memory cell. Whenever update u1 is performed, the data structure increments the
contents of the first memory cell by one. On update u2, the data structure copies the contents
of the first memory cell to the second memory cell. Clearly both operations are non-adaptive,
and we observe that whenever we have performed update u2, the second memory cell stores
the number of times update u1 has been performed, even though u1 never probes the cell.
For memoryless updates, information about an update is only stored in cells that are actually
probed when processing the update operation.

Linear data structures are inherently memoryless. However, some features possible with
memoryless updates are not available to linear data structures. For example, memoryless update
algorithms can support cells that maintain a count of the total number of updates executed.
This is not possible with linear data structures, since the contents of each cell is a fixed linear
combination of the data being stored.

1.4 Our Results

The main result of this paper, is to demonstrate that polynomial cell probe lower bounds can
be achieved when we restrict data structures to be non-adaptive. In Section 2 we also prove
lower bounds for data structures where only the query algorithm is non-adaptive. The concrete
data structure problem that we study in this setting is the following indexing problem.

Indexing Problem. In a preprocessing phase, we receive a set of k binary strings S1, . . . , Sk,
each of length n. We are then to support updates, consisting of an index j ∈ [n], which we
think of as an index into the strings S1, . . . , Sk. A query is finally specified by an index i ∈ [k]
and the goal is to return the j’th bit of Si.

Theorem 1. Any cell probe data structure solving the indexing problem with a non-adaptive
query algorithm must either have tq = Ω(n/w) or tu = Ω(k/w), regardless of the preprocessing
time and space usage.

Examining this problem, one quickly observes that it is a special case of the multiphase
problem presented in Section 1.2, thus by setting the parameters in the reductions of [17, 2]
correctly we obtain, amongst others, the following lower bounds as an immediate corollary of
our lower bound for the indexing problem:

Corollary 1. Any cell probe data structure that uses a non-adaptive query algorithm to solve
(i) reachability in directed graphs or (ii) subgraph connectivity must either have tq = Ω(n/w) or
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tu = Ω(n/w). Any cell probe data structure that solves range mode with a non-adaptive query
algorithm must have tqtu = Ω(n/w2).

In Section 2, we prove lower bounds for data structures where the query algorithm is allowed
to be adaptive, but the update algorithm is memoryless. Again, we prove our lower bound for
a special case of the multiphase problem:

Set Disjointness Problem. In a preprocessing phase, we receive a subset S of a universe
[n]. We are then to support inserting elements x ∈ [n] into an initially empty set T . Finally a
query simply asks to return whether S ∩ T = ∅, i.e. the problem has just one query.

Theorem 2. Any cell probe data structure solving the set disjointness problem with a memory-
less update algorithm must have tq = Ω(n/w), regardless of the preprocessing time, space usage
and update time.

Again, using the reductions of [17, 2], we obtain the following lower bounds as a corollary
of our lower bound for the set disjointness problem:

Corollary 2. Any cell probe data structure that uses a memoryless update algorithm to solve
(i) reachability in directed graphs, (ii) subgraph connectivity, or (iii) range mode must have
tq = Ω(n/w).

Finally, in Section 3, we show a strong connection between nonadaptive data structures
and the wire complexity of depth-2 circuits. In these circuits, gates have unbounded fan-in and
fan-out and compute arbitrary functions. Thus, trivial bounds on the number of gates exist.
Instead, the size of a circuit s(C) is defined to be the number of wires.

Proving lower bounds on the size of circuits computing explicit operators F : {0, 1}n →
{0, 1}m has been studied in several works. In particular, Valiant [20] showed that an ω(n2/(lg lg n))
bound for circuits computing F implies that F cannot be computed by log-depth, linear size,
bounded fan-in circuits. Currently, the best bounds known for an explicit operator are Ω(n3/2).
Cherukhin [6] gave such a bound for circuits computing cyclic convolutions. Jukna [10] gave
a similar lower bound for circuits computing matrix multiplication, and developed a general
technique for proving such lower bounds, formalizing the intuition in [6].

First, we show how to use simple encoding arguments common to data structure lower
bounds to achieve circuit lower bounds, using matrix multiplication as an example. Our bound
matches the result from [10], but yields a simpler argument. We discuss Jukna’s technique in
more detail in Section 3.

Theorem 3 ([10]). Any circuit computing matrix multiplication has size at least n3/2.

Depth-2 circuits computing explicit linear operators are of particular interest. Currently,
the best lower bound for an explicit linear operator is the recent Θ(n(lg n/ lg lg n)2) bound of
Gál et al. [8] for circuits that compute error correcting codes. Another interesting question is
whether general circuits are more powerful than linear circuits for computing linear operators.
Linear circuits use only XOR gates; i.e., each gate outputs a linear combination in GF(2) over
its inputs.

We show a generic connection between linear data structures and linear circuits. Define a
problem P as a mapping FP = (f1, . . . , fm) : {0, 1}n → {0, 1}m, where each fj : {0, 1}n → {0, 1}.
For linear data structures, think of the domain {0, 1}n as the input array A with n bits, and
view each fj as a query, where fj(A) is the answer to the query fj on the input A. A linear
data structure hence solves P, if after any sequence of updates to A, it holds for all 1 ≤ j ≤ m
that answering the query fj returns the value fj(A).
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Lemma 1. If there is a linear data structure for a problem P with query time of tq and update
time tu, then there exists a depth-2 linear circuit C computing FP with size s(C) ≤ ntu + mtq.

If there is a depth-2 linear circuit C that computes FP , then there is a linear data structure
for P with average query time at most s(C)/m and average update time at most s(C)/n.

Lemma 1 thus gives a new way to attack circuit lower bounds. We believe the connection
between non-adaptive data structures and depth-2 circuits has the potential to yield strong in-
sight to this problem, and that several linear operators conjectured to have strong data structure
lower bounds are good candidates for hard circuit problems (for linear or general circuits).

Apart from being interesting lower bounds in their own right, we believe our results shed
much light on the inherent difficulties of proving polynomial lower bounds in the cell probe
model. In particular the movement of data when performing updates (see the discussion in
Section 1.3) appears to be a major obstacle. We conclude in Section 4 with a discussion of our
results and potential directions for future research.

2 Lower Bounds

In this section, we first prove lower bounds for data structures where only the query algorithm
is assumed non-adaptive. The problem we study is the indexing problem defined in Section 1.4.

Theorem 4 (Restatement of Theorem 1). Any cell probe data structure solving the indexing
problem with a non-adaptive query algorithm must either have tq = Ω(n/w) or tu = Ω(k/w),
regardless of the preprocessing time and space usage. Here tq denotes the query time, tu the
update time and w the cell size in bits.

We prove this using an encoding argument. Specifically, consider a game between an encoder
and a decoder. The encoder receives as input k binary string S1, . . . , Sk, each of length n
and must from this send a message to the decoder. From the message alone, the decoder
must uniquely recover all the strings S1, . . . , Sk. If the strings S1, . . . , Sk are drawn from a
distribution, then the expected length of the message must be at least H(S1 · · ·Sk), or we have
reached a contradiction. Here H(·) denotes Shannon entropy.

The idea in our proof is to assume for contradiction that a data structure for the indexing
problem exists with a non-adaptive query algorithm that simultaneously has tq = o(n/w) and
tu = o(k/w). Using this data structure as a black box, we construct a message that is shorter
than H(S1 · · ·Sk), but at the same time, the decoder can recover S1, . . . , Sk from the message,
i.e. we have reached the contradiction. We let the k strings S1, . . . , Sk given as input to the
encoder be uniform random bit strings of length n. Clearly H(S1 · · ·Sk) = kn.

Encoding Procedure. When given the strings S1, . . . , Sk as input, the encoder first runs the
preprocessing algorithm of the claimed data structure on S1, . . . , Sk. He then examines every
possible query index i ∈ [k], and for each i, collects the set of addresses of the cells probed on
query i. Since the query algorithm is non-adaptive, these sets of addresses are independent of
S1, . . . , Sk and any updates we might perform on the data structure. Letting C denote the set
containing all these addresses for all i, the encoder starts by writing down the concatenation of
the contents of all cells with an address in C. This constitutes the first part of the message.

The encoder now runs through every possible update j ∈ [n]. For each j, he runs the update
algorithm as if update j was performed on the data structure. While running update j, the
decoder appends the contents of the probed cells (as they are when the update reads the cells,
not after potential changes) to the constructed message. After processing all j’s, the encoder
finally sends the constructed message to the decoder. This completes the encoding procedure.
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Decoding Procedure. The decoder receives as input the message consisting first of the con-
tents of all cells with an address in C after preprocessing S1, . . . , Sk. Since the query algorithm
is non-adaptive, the decoder knows the addresses of all these cells simply by examining the
query algorithm of the claimed data structure. The decoder will now run the update algorithm
of every j ∈ [n]. While doing this, he maintains the contents of all cells in C and all cells probed
during the updates. Specifically, the decoder does the following:

For each j = 1, . . . , n in turn, he starts to run the update algorithm for j. Observe that
the contents of each probed cell (before potential changes) can be recovered from the message
(the contents appear one after another in the message). This allows the decoder to completely
simulate the update algorithm for each j = 1, . . . , n. Note furthermore that for each cell that is
probed during these updates, the address can also be recovered simply by examining the update
algorithm. In this way, the decoder always knows the contents of all cells in C and all cells
probed by the update algorithm as they would have been after preprocessing S1, . . . , Sk and
performing the updates after this preprocessing. While processing the updates j = 1, . . . , n, the
decoder also executes a number of queries: After having completely processed an update j, the
decoder runs the query algorithm for every i ∈ [k]. Note that the decoder knows the contents
of all the probed cells as if the preprocessing on S1, . . . , Sk had been performed, followed by
updates j′ = 1, . . . , j. This implies that the simulation of the query algorithm for each i ∈ [k]
terminates precisely with the answer being the j’th bit of Si. It follows immediately that the
decoder can recover every bit of every Si from the message.

Analysis. What remains is to analyze the size of the message. Since by assumption, the
query time is tq = o(n/w), the first part of the message has tqkw = o(kn) bits. Similarly, we
assumed tu = o(k/w), thus the second part of the message has tunw = o(kn) bits. Thus the
entire message has o(kn) bits. Since H(S1 · · ·Sk) = kn, we have reached our contradiction.
This completes the proof of Theorem 1.

Next, we prove lower bounds for data structures where only the update algorithm is assumed to
be memoryless, that is, we allow the query algorithm to be adaptive. In this setting, we study
the set disjointness problem defined in Section 1.4:

Theorem 5 (Restatement of Theorem 2). Any cell probe data structure solving the set dis-
jointness problem with a memoryless update algorithm must have tq = Ω(n/w), regardless of
the preprocessing time, space usage and update time. Here tq denotes the query time and w the
cell size in bits.

Again, we prove this using an encoding argument. In this encoding proof, we let the input
of the encoder be a uniform random set S ⊆ [n]. Clearly H(S) = n bits. We now assume
for contradiction that there exists a data structure for the set disjointness problem with a
memoryless update algorithm and at the same it has query time tq = o(n/w). The encoder uses
this data structure to send a message encoding S in less than n bits, i.e. a contradiction.

Encoding Procedure. When the encoder receives S, he runs the preprocessing algorithm of
the claimed data strucutre. Then, he computes S̄ = [n]\S and inserts S̄ into the data structure
as the set T . Finally, the encoder runs the query algorithm and notes the set of cells C probed.
Note that by the choice of S̄, the query algorithm will output disjoint, and furthermore, S̄ is
the largest possible set that will result in a disjoint answer.

The encoding consists of three parts2: (i) the addresses of the cells in C, (ii) the contents
2In fact, it is possible for the decoder to recover C from the second two parts of the encoding, so the first part

is unnecessary. However, this does not materially affect our lower bound, so we omit the details.

7



of the cells in C after preprocessing but before inserting S̄, and (iii) the contents of the cells in
C after inserting S̄.

Decoding Procedure. The decoder iterates over all sets S′ ⊆ [n]. Each time, the decoder
initializes the contents of cells in C to match the second part of the encoder’s message. Then,
he inserts each element of S′ into the data structure, changing the contents of any cell in C
where appropriate. When a cell outside of C is to be changed, the decoder does nothing. Since
the update algorithm is memoryless, this procedure ends with all cells in C having the same
contents as they would have had after preprocessing S and inserting elements of S′. Moreover,
if the contents match the contents written down in the third part of the encoding, then it must
be that S and S′ are disjoint (we know that the query answers disjoint when the contents of
C are like that). When S′ = S̄, the contents of C will match the last part of the encoding,
and it is trivially the largest set to do so. Thus, the decoder selects the largest set S∗ whose
updates to C match the contents written down in the third part of the encoding. In this way,
the decoder recovers S = [n] \ S∗.

Analysis. Finally, we analyze the size of the encoding. Since we assumed tq = o(n/w), the
encoding has size 3tqw = o(n) bits. But H(S) = n, thus we have reached a contradiction.

3 Circuits and Non-Adaptive Data Structures

In this section, we demonstrate a strong connection between non-adaptive data structures and
the wire complexity of depth-2 circuits. A depth-2 circuit computing F = (f1, . . . , fm) :
{0, 1}n → {0, 1}m is a directed graph with three layers of vertices. The first layer consists
of n input nodes, labeled x1, . . . , xn ∈ {0, 1}. Vertices in the second layer are interior gates and
output boolean values. The last layer consists of m output gates, labeled z1, . . . , zm ∈ {0, 1}.
There are edges between input nodes and interior gates, and between interior gates and output
gates. Each gate computes an arbitrary function of its inputs. Since non-input nodes compute
arbitrary functions, f can be trivially computed using m gates. Instead, we define the size s(C)
of a depth-2 ciruit C as the total number of wires in it; i.e., the number of edges in the graph.

First, we show how to use the encoding technique common to data structure lower bounds
to achieve size bounds for depth-2 circuits. As a proof of concept, we prove such a lower bound
for matrix multiplication. We say that a circuit computes matrix multiplication if there are
n = 2m inputs, each corresponding to an entry in one of two

√
n×
√

n binary matrices A and
B, and each output gate computes an entry in the product A ·B. Arithmetic is in GF(2).

Jukna [10] considered depth-2 circuits and gave an n3/2 lower bound for circuits computing
boolean matrix multiplication. At a high level, his proof proceeds in the following fashion.

1. Partition input nodes into sets I1, . . . , It and output gates into sets J1, . . . , Jt.

2. Prove that for each 1 ≤ ` ≤ t, the number of wires leaving inputs from I` plus the number
of wires entering outputs in J` must be large.

3. Conclude a large lower bound by summing the terms from Step 2.

Note that since {I`} and {J`} are partitions, they induce a partition on the wires in the circuit.
Jukna proves Step 2 by proving lower bounds on what he calls the entropy of an operator. He
proves a lower bound on the entropy of an operator by carefully analyzing subfunctions of the
operator. In the case of matrix multiplication, subfunctions are created by fixing entries in B
to be all zero, except for a single cell B[k, `]. Each I`, J` represents a column in B and in A ·B
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respectively. By ranging over different k, `, Jukna is able to argue that the entropy of matrix
multiplication is high. The details of this argument are technical.

We give a new proof for Step 2 using an encoding argument. The encoder exploits the circuit
operations to encode a

√
n×
√

n matrix A. The encoded message has length precisely equal to
the nubmer of outgoing wires in I` and incoming wires to J`. The argument is very similar to
the arguments in Section 2; we leave it to the full version of the paper for lack of space.

Theorem 6. Any circuit C computing boolean matrix multiplication has size s(C) ≥ n3/2.

Finally, we provide a strong connection between depth-2 linear circuits and linear data
structures. The connection is almost immediately established:

Lemma 2 (Restatement of Lemma 1). If there is a linear data structure for a problem P with
query time of tq and update time tu, then there exists a depth-2 linear circuit C computing FP
with size s(C) ≤ ntu + mtq.

If there is a depth-2 linear circuit C computing FP , then there is a linear data structure for
P with average query time at most s(C)/m and average update time at most s(C)/n.

Proof. First, suppose there exists a linear data structure solving P. We construct the corre-
sponding depth-2 circuit directly. Input nodes correspond to the n bits of the input (the array A
in the definition of linear data structures). Output nodes correspond to the m possible queries,
and there is an interior node for each cell in the database. For each update 1 ≤ i ≤ n (flip an
entry of A), add edges from xi to each of the cells updated by the data structure. Similarly,
add wires (ci, zj) whenever the jth query probes the ith cell in the data structure. Correctness
follows immediately. Finally, note that since updates and queries probe at most tu and tq cells
respectively, the total number of wires in the circuit is bounded by s(C) ≤ ntu + mtq.

Constructing a linear data structure from a linear depth-2 circuit C is similar. Letting tu,i

and tq,j denote the number of cells probed during the ith update and jth query respectively, it is
easy to see that s(C) =

∑n
i=1 tu,i +

∑m
j=1 tq,j . It follows that the average update time is at most

1
n

∑
tu,i ≤ s(C)/n, and similarly that the average query time is at most 1

m

∑
tq,j ≤ s(C)/m.

The main contribution of Lemma 2 is a new range of candidate hard problems for linear
circuits, all inspired by data structure problems. As mentioned in Section 1.3, linear data
structures most naturally occur in the field of range searching. Furthermore, these data structure
problems turn out to correspond precisely to linear operators: Let P = {p1, . . . , pn} be a fixed
set of n points in Rd, and let R be a set of query ranges, where each Ri ∈ R is a subset of
Rd. P and R naturally define a linear operator A(P,R) ∈ {0, 1}|R|×|P |, where the ith row of
A(P,R) has a 1 in the jth column if pj ∈ Ri and 0 otherwise. In the light of Lemma 2, assume
a linear data structure solves the following range counting problem: Given the fixed set of
points P , each assigned a weight in {0, 1}, support flipping the weights of the points (intuitively
inserting/deleting the points) while also supporting to efficiently compute the parity of the
weights assigned to the points inside a query range Ri ∈ R. Then that linear data structure
immediately translates into a linear circuit for the linear operator A(P,R) and vice versa.
Thus we expect that hard range searching problems of the above form also provide hard linear
operators for linear circuits. The seemingly hardest range searching problem is simplex range
searching, where we believe that the following holds:

Conjecture 1. There exists a constant ε > 0, a set R of Θ(n) simplices in Rd and a set
of n points in Rd, such that any data structure solving the above range counting problem (flip
weights, parity queries), must have average query and update time tutq = Ω(nε).
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We have toned down Conjecture 1 somewhat, since the community generally believe ε can
be replaced by 1− 1/d, but to be on the safe side we only conjecture the above. In the circuit
setting, this conjecture translates to

Corollary 3. If Conjecture 1 is true for linear data structures, then there exists a constant
δ > 0, a set R of Θ(n) simplices in Rd and a set P of n points, such that any linear circuit
computing the linear operator A(P,R) must have Ω(n1+δ) wires.

Furthermore, the research on data structure lower bounds also provide a lot of insight into
which concrete sets P and R that might be difficult. More specifically, polynomial lower bounds
for simplex range searching has been proved for: range reporting in the pointer machine [5, 1]
and I/O-model [1], range searching in the semi-group model [3] and range searching in the
group model [11, 14]. The group model comes closest in spirit to linear data structures. A
data structure in the group model is essentially a linear data structure, where instead of storing
linear combinations over GF(2), we store linear combinations with integer coefficients (and no
mod operations). Similarly, queries are answered by computing linear combinations over the
stored elements, but with integer coefficients and not over GF(2). The properties used to drive
home range searching lower bounds in the group model are:

• If A(P,R) has polynomial red-blue discrepancy, then any group model data structure
must have tutq = Ω(nε) for some constant ε > 0.

• If A(P,R) has Ω(n) eigenvalues that are polynomial, then any group model data structure
must have tutq = Ω(nε) for some constant ε > 0.

• If |Ri ∩ P | is polynomial for all Ri ∈ R and |Ri ∩ Rj ∩ P | = O(1) for all i 6= j, then any
group model data structure must have tutq = Ω(nε) for some constant ε > 0.

The last property directly translates to A(P,R) having rows and columns with polynomially
many 1s and any two rows/columns having a constant number of 1s in common. Given the
tight correspondence between group model data structures and linear data structures, we believe
these properties are worth investigating in the circuit setting. Furthermore, a concrete set of n
points P and a set of Θ(n) simplices R, with all three properties, is known even in R2. This
example can be found in [4], where it is stated for R being lines (i.e. degenerate simplices).
Note that the lower bound in [4] is for range reporting in the pointer machine, but using the
observations in [11, 14] it is easily seen that all the above properties hold.

Even if these properties are not enough to obtain lower bounds for linear operators, we
believe the geometric approach might be useful in its own right.

4 Conclusion

In this paper, we have studied the role non-adaptivity plays in dynamic data structures. Surpris-
ingly, we were able to prove polynomially high lower bounds for such data structures. Perhaps
more importantly, we believe our results shed much new light on the current polylogarithmic
barriers if we do not make any restrictions on data structures. We also presented an interesting
connection between data structures and depth-2 circuits. The connection between linear op-
erators and range searching is particularly intriguing, revealing a number of new properties to
investigate further in the realm of circuit lower bounds.
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A A Lower Bound Proof for Matrix Multiplication

Theorem 7 (Restatement of Theorem 6). Any circuit C computing boolean matrix multiplica-
tion has size s(C) ≥ n3/2.

Proof. Fix a circuit C. Let P = A ·B. For 1 ≤ ` ≤
√

n, let I` denote the `th column of B; that
is, I` consists of all inputs corresponding to B[k, `] for some k. Similarly, J` is the set of all
outputs corresponding to the `th column of P ; that is, all outputs given by P [k, `] for some k.
Let tu,` denote the number of wires leaving inputs in I`. Similarly, let tq,` denote the number
of wires entering outputs in J`.

Claim 1. For any `, we have tu,` + tq,` ≥ n.

Before proving this claim, note that Theorem 6 follows directly, since there are
√

n pairs
(I`, J`) and the wires corresponding to each pair are disjoint.

Proof of Claim 1. This proof will involve an encoding argument. The encoder will receive a√
n×
√

n boolean matrix M , where M is drawn uniformly amongst all such boolean matrices.
He will then use the matrix multiplication circuit to encode M in such a way that the size of
the encoding depends on the wires leaving I` and entering J`.

Encoding Procedure. The encoder receives M . As a first step, he sets A[i, j]←M [i, j] for
all i, j; he also sets all entries in B to zero. He then writes down the output of all interior gates
adjacent to an output in J`. In the second step, for each 1 ≤ k ≤

√
n, the encoder performs the

following: he sets B[k, `] ← 1 and sets all other entries in B to zero. He then writes down the
output of all interior gates adjacent to B[k, `]. This completes the encoding procedure.

Decoding Procedure. Note that P [i, `] =
∑

j A[i, j]B[j, `]. In particular, when B consists
of a 1 in entry [k, `] and zero in all other entries, then the `th column of P corresponds to the
kth column of A. The decoder thus recovers the kth column of M by using C to compute the
`th column of P , i.e., by querying all outputs in J`. For each output gate in J`, she looks at
all interior gates adjacent to it. For each of these gates g, the decoder checks to see if g is
adjacent to the input gate B[k, `]. If so, then she recovers the correct output value of this gate
from the second part of the encoding. Otherwise, she recovers the correct output from the first
part (noting that in this case, changing the value of B[k, `] does not affect g). In this way, the
decoder recovers the `th column of C, which is also the kth column of A, which is again the
kth column of M . Doing this for all k completes the decoding.
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Analysis. The first part of the encoding consists of the output of each interior gate adjacent
to at least one output in J`. Thus, the first part of the encoding can be described in at most
tq,` bits. The second part of the encoding consists of the output of each interior gate adjacent
to each input node in I`. This requires at most tu,` bits. Thus, the total length of the encoding
is at most tu,` + tq,`. The decoder recovers all of M from this message. Since each entry of M
is independent and uniform, H(M) = n. Thus, tu,` + tq,` ≥ n.

Remark. As mentioned previously, Jukna proves his lower bounds by defining the entropy of
an operator. He lower bounds the wire complexity of a circuit by the entropy of the operator
it computes. He proves a lower bound on the entropy of an operator by carefully analyzing
subfunctions of the operator, created by fixing subsets of the variables to specific values and
considering the induced function on the remaining variables.

Parts of Jukna’s proof are similar in spirit to ours. In particular, the way we encode M by
fixing the matrix B to be one in entry [k, `] and zero elsewhere corresponds to the subfunctions
Jukna considers in his proof. In fact, we believe that any lower bound provable using Jukna’s
technique can also be proved using our method. Our advantage is in replacing Jukna’s technical
and somewhat complicated machinery with a simple encoding argument.
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