
Distributed Version Control with git

Andrew Danner, SWICS
15 November 2013

gti-scm book License

https://github.com/github/gitscm-next/blob/master/MIT-LICENSE.txt
https://github.com/github/gitscm-next/blob/master/MIT-LICENSE.txt

5 Things you should stop doing
● Sharing code via email
● Sharing code via .tar, .zip, .tgz
● Sharing passwords
● _oldCopy22.cpp version control
● dropbox version control

4 Reasons to learn version control
● Get employed
● Share code with others
● Collaborate on cool projects
● Code audits, legal protection?

Why Version Control Systems (VCS)?

● Manage source code changes in a sane way
● Track progress
● Allow undo/revert (It worked a week ago)
● Multiple Branches

○ Release version
○ Devel version
○ Experimental features
○ Quick patches, bug fixes

● Sharing of code, Collaboration

Distributed vs Centralized

● Centralized (CVS, Subversion)
○ One central repository: the gold standard
○ All updates made against central repo
○ No access to repo? No updates
○ Must sync with central repo before adding updates

● Decentralized (git, mercurial, bazaar)
○ Multiple copies/clones/forks of repositories
○ You can always have a local repo [Part I]
○ You can optionally have a central repo [Part II]

■ push to remote, pull from remote
■ can have multiple remotes

○ More distributed sharing options

What [not] to put under version
control

● DO
○ text based things made by humans
○ source code
○ scripts

● DON'T
○ large binary files that change often

■ images, audio, video
○ Things automatically built

■ executables, object files
○ Temporary files
○ Sensitive data: passwords, private ssh keys
○ Ignore these things with .gitignore file

Git: A DVCS
● Used for many projects

○ Linux kernel
○ github.com

● May seem overwhelming at first
● Can get started with a few basic commands
● Learn more incrementally
● Today: Using git locally
● Next week: Collaborative git

First time setup
● Do this once per network
● check git config -l
● if no user.name:

○ git config --global user.name “My Name”
○ git config --global user.email “me@place.com”

● This step will identify your code
modifications as belonging to you

See also https://help.github.com/articles/set-up-git

mailto:me@place.com

Git: A DVCS. Initial setup
● git init woot

○ run init once per project
○ next week: git clone

● add some files
● git status (the ls of git)
● git add
● git commit

○ git commit -m
● .gitignore

Demo
git config -l

if needed
git config --global user.name=”Andrew Danner”
git config --global user.email=”adanner@corgination.org”

git init woot
cd woot
vim Readme.txt
git status
git add Readme.txt
git status
git commit -m "initial checkin"

vim prog.py
vim Readme.txt
git status
git add prog.py Readme.txt
git commit -m "I'm programming"

git status

gitg

mailto:adanner@corgination.org

Daily workflow
● Edit old files
● Add new files
● git status
● git add

○ “stages” files for commit
● git commit, git commit -m

○ saves changes in history
● .gitignore

○ ignore files that you don’t want to version control
○ *.o, *.avi, *.bak, *~, .*.swp, build/*

Reviewing changes
● git log
● gitg, gitx, git
● git status
● git add

○ “stages” files for commit
● git commit, git commit -m

○ saves changes in history
● .gitignore

○ ignore files that you don’t want to version control
○ *.o, *.avi, *.bak, *~, .*.swp, build/*

Local git repo

● Working Directory
○ what your directory currently looks like
○ pretend git wasn't there

● Stage (Index)
○ Things that are added to be part of next commit
○ Not committed yet

● History (Local repository)
○ Committed from staging area
○ Part of git history

● Stash
● Upstream (Remote repository)

Git Branching and Merging

● Use branches to work on multiple features in
parallel

● Test out new ideas, fix bugs
● You should do most of your development

work in a branch
● There seems to be a lot of branching FUD

surrounding git. These folks probably were
burned by some other VCS in the past that
had poor branch support

● Git has great branch support

Demo - Branching
git status
#create and switch to new branch
git checkout -b devel
git status
vim prog.py
python prog.py
git status
git add prog.py
git commit -m "awesome feature"

#move to existing branch
git checkout master
vim prog.py
git commit -a -m "documented code"
git status
git branch
gitg &

#fixing conflicts
git merge devel
vim prog.py
git status
git add prog.py
git commit

#fast forward merge after conflict
git checkout devel
git merge master

#not all merges result in conflict

Git Branching and Merging

● git branch newfeature
● git checkout newfeature
● add some changes
● git checkout master
● use gitg to view repo history
● add changes. branch divergence!!!
● git merge <frombranch>
● merge conflicts and resolutions

○ do not blindly add conflicted files back into git
○ you will most likely break your code

● git branch lists, creates, deletes branches

Undoing changes

● git mv
● git rm removes from git and working tree
● git rm --cached only removes from git
● git checkout --
● git revert, the anti-commit
● git rebase

○ helpful when collaborating
○ only use on local repos
○ do not rebase remotes
○ not really an undo. more of a redo

Preview of next week

● Sharing with others
● cloning existing projects
● remotes, push, fetch, pull
● publishing local repos
● Swat CS git server
● github
● acls/bare repos?
● Q&A

Remote repositories

● Sharing/Collaborating is usually done with a
remote repository

● git clone
● git fetch, git pull
● git push
● git remote add
● git branch -a, -av, -avv
● Local stuff still applies
● push: share from your local to remote
● pull: pull from remote to your local

Other tools
● Swarthmore git server
● github for more public projects
● git svn clone

Other commands

● git cherry-pick
● git stash
● git help

Git resources

● Pro Git book
● Git @ Swat
● Git Terminology See also git help glossary
● Git Ready learn git one feature at a time
● Git Immersion
● Understanding Git
● Visual Git Reference
● Git Cheatsheet

http://git-scm.com/documentation
http://git-scm.com/documentation
http://svn.cs.swarthmore.edu/cshelp/wiki/Git
http://svn.cs.swarthmore.edu/cshelp/wiki/Git
http://gitolite.com/concepts/0-terminology.html
http://gitolite.com/concepts/0-terminology.html
http://gitready.com/
http://gitready.com/
http://gitimmersion.com/index.html
http://gitimmersion.com/index.html
http://www.sbf5.com/~cduan/technical/git/
http://www.sbf5.com/~cduan/technical/git/
http://marklodato.github.io/visual-git-guide/index-en.html
http://marklodato.github.io/visual-git-guide/index-en.html
http://www.ndpsoftware.com/git-cheatsheet.html
http://www.ndpsoftware.com/git-cheatsheet.html

